Bayesian Analysis of Longitudinal Ordinal Data with Missing Values Using Multivariate Probit Models.

Q3 Social Sciences
Xiao Zhang
{"title":"Bayesian Analysis of Longitudinal Ordinal Data with Missing Values Using Multivariate Probit Models.","authors":"Xiao Zhang","doi":"10.18576/jsap/140302","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose efficient Bayesian methods to analyze longitudinal ordinal data with missing values using multivariate probit models. Longitudinal ordinal data with substantial missing values are ubiquitous in many scientific fields. Specifically, we develop the Markov chain Monte Carlo (MCMC) sampling methods based on the non-identifiable multivariate probit models and further compare their performance with the one based on the identifiable multivariate probit models. We carried out our investigation through simulation studies, which show that the proposed methods can handle substantial missing values and the method with marginalizing the redundant parameters based on the non-identifiable model outperforms the others in the mixing and convergences of the MCMC sampling components. We then present an application using data from the Russia Longitudinal Monitoring Survey-Higher School of Economics (RLMS-HSE).</p>","PeriodicalId":37070,"journal":{"name":"Journal of Statistics Applications and Probability","volume":"14 3","pages":"337-352"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381765/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistics Applications and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18576/jsap/140302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose efficient Bayesian methods to analyze longitudinal ordinal data with missing values using multivariate probit models. Longitudinal ordinal data with substantial missing values are ubiquitous in many scientific fields. Specifically, we develop the Markov chain Monte Carlo (MCMC) sampling methods based on the non-identifiable multivariate probit models and further compare their performance with the one based on the identifiable multivariate probit models. We carried out our investigation through simulation studies, which show that the proposed methods can handle substantial missing values and the method with marginalizing the redundant parameters based on the non-identifiable model outperforms the others in the mixing and convergences of the MCMC sampling components. We then present an application using data from the Russia Longitudinal Monitoring Survey-Higher School of Economics (RLMS-HSE).

利用多元概率模型对缺失值纵向有序数据进行贝叶斯分析。
在本文中,我们提出了有效的贝叶斯方法来分析具有缺失值的纵向有序数据。具有大量缺失值的纵向有序数据在许多科学领域普遍存在。具体而言,我们开发了基于不可识别多变量概率模型的马尔可夫链蒙特卡罗(MCMC)采样方法,并进一步将其与基于可识别多变量概率模型的采样方法进行了性能比较。通过仿真研究表明,所提出的方法可以处理大量缺失值,并且基于不可识别模型的冗余参数边缘化方法在MCMC采样分量的混合和收敛方面优于其他方法。然后,我们使用俄罗斯纵向监测调查-高等经济学院(RLMS-HSE)的数据提出了一个应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistics Applications and Probability
Journal of Statistics Applications and Probability Social Sciences-Library and Information Sciences
CiteScore
1.20
自引率
0.00%
发文量
103
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信