DFCNet: Dual-Stage Frequency-Domain Calibration Network for Low-Light Image Enhancement.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Hui Zhou, Jun Li, Yaming Mao, Lu Liu, Yiyang Lu
{"title":"DFCNet: Dual-Stage Frequency-Domain Calibration Network for Low-Light Image Enhancement.","authors":"Hui Zhou, Jun Li, Yaming Mao, Lu Liu, Yiyang Lu","doi":"10.3390/jimaging11080253","DOIUrl":null,"url":null,"abstract":"<p><p>Imaging technologies are widely used in surveillance, medical diagnostics, and other critical applications. However, under low-light conditions, captured images often suffer from insufficient brightness, blurred details, and excessive noise, degrading quality and hindering downstream tasks. Conventional low-light image enhancement (LLIE) methods not only require annotated data but also often involve heavy models with high computational costs, making them unsuitable for real-time processing. To tackle these challenges, a lightweight and unsupervised LLIE method utilizing a dual-stage frequency-domain calibration network (DFCNet) is proposed. In the first stage, the input image undergoes the preliminary feature modulation (PFM) module to guide the illumination estimation (IE) module in generating a more accurate illumination map. The final enhanced image is obtained by dividing the input by the estimated illumination map. The second stage is used only during training. It applies a frequency-domain residual calibration (FRC) module to the first-stage output, generating a calibration term that is added to the original input to darken dark regions and brighten bright areas. This updated input is then fed back to the PFM and IE modules for parameter optimization. Extensive experiments on benchmark datasets demonstrate that DFCNet achieves superior performance across multiple image quality metrics while delivering visually clearer and more natural results.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387550/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11080253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Imaging technologies are widely used in surveillance, medical diagnostics, and other critical applications. However, under low-light conditions, captured images often suffer from insufficient brightness, blurred details, and excessive noise, degrading quality and hindering downstream tasks. Conventional low-light image enhancement (LLIE) methods not only require annotated data but also often involve heavy models with high computational costs, making them unsuitable for real-time processing. To tackle these challenges, a lightweight and unsupervised LLIE method utilizing a dual-stage frequency-domain calibration network (DFCNet) is proposed. In the first stage, the input image undergoes the preliminary feature modulation (PFM) module to guide the illumination estimation (IE) module in generating a more accurate illumination map. The final enhanced image is obtained by dividing the input by the estimated illumination map. The second stage is used only during training. It applies a frequency-domain residual calibration (FRC) module to the first-stage output, generating a calibration term that is added to the original input to darken dark regions and brighten bright areas. This updated input is then fed back to the PFM and IE modules for parameter optimization. Extensive experiments on benchmark datasets demonstrate that DFCNet achieves superior performance across multiple image quality metrics while delivering visually clearer and more natural results.

DFCNet:用于弱光图像增强的双级频域校准网络。
成像技术广泛应用于监测、医学诊断和其他关键应用。然而,在弱光条件下,捕获的图像往往亮度不足,细节模糊,噪声过大,质量下降,阻碍下游任务。传统的微光图像增强(LLIE)方法不仅需要带注释的数据,而且往往需要大量的模型,计算成本高,不适合实时处理。为了解决这些问题,提出了一种利用双级频域校准网络(DFCNet)的轻量级无监督LLIE方法。在第一阶段,输入图像经过初步特征调制(PFM)模块,以指导照度估计(IE)模块生成更精确的照度图。最终的增强图像由输入除以估计的照度图得到。第二阶段仅在训练期间使用。它将频域残差校准(FRC)模块应用于第一级输出,生成一个校准项,该校准项被添加到原始输入中,使暗区变暗,亮区变亮。然后将更新后的输入反馈到PFM和IE模块进行参数优化。在基准数据集上的大量实验表明,DFCNet在多个图像质量指标上实现了卓越的性能,同时提供了视觉上更清晰、更自然的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信