Harnessing multi-output machine learning approach and dynamical observables from network structure to optimize COVID-19 intervention strategies.

IF 1.3 Q3 BIOCHEMICAL RESEARCH METHODS
Biology Methods and Protocols Pub Date : 2025-06-05 eCollection Date: 2025-01-01 DOI:10.1093/biomethods/bpaf039
Caroline L Alves, Katharina Kuhnert, Francisco Aparecido Rodrigues, Michael Moeckel
{"title":"Harnessing multi-output machine learning approach and dynamical observables from network structure to optimize COVID-19 intervention strategies.","authors":"Caroline L Alves, Katharina Kuhnert, Francisco Aparecido Rodrigues, Michael Moeckel","doi":"10.1093/biomethods/bpaf039","DOIUrl":null,"url":null,"abstract":"<p><p>The coronavirus disease 2019 (COVID-19) pandemic has necessitated the development of accurate models to predict disease dynamics and guide public health interventions. This study leverages the COVASIM agent-based model to simulate 1331 scenarios of COVID-19 transmission across various social settings, focusing on the school, community, and work contact layers. We extracted complex network measures from these simulations and applied deep learning algorithms to predict key epidemiological outcomes, such as infected, severe, and critical cases. Our approach achieved an <math> <mrow> <mrow> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </mrow> </mrow> </math> value exceeding 95%, demonstrating the model's robust predictive capability. Additionally, we identified optimal intervention strategies using spline interpolation, revealing the critical roles of community and workplace interventions in minimizing the pandemic's impact. The findings underscore the value of integrating network analytics with deep learning to streamline epidemic modeling, reduce computational costs, and enhance public health decision-making. This research offers a novel framework for effectively managing infectious disease outbreaks through targeted, data-driven interventions.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"10 1","pages":"bpaf039"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12377909/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomethods/bpaf039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The coronavirus disease 2019 (COVID-19) pandemic has necessitated the development of accurate models to predict disease dynamics and guide public health interventions. This study leverages the COVASIM agent-based model to simulate 1331 scenarios of COVID-19 transmission across various social settings, focusing on the school, community, and work contact layers. We extracted complex network measures from these simulations and applied deep learning algorithms to predict key epidemiological outcomes, such as infected, severe, and critical cases. Our approach achieved an R 2 value exceeding 95%, demonstrating the model's robust predictive capability. Additionally, we identified optimal intervention strategies using spline interpolation, revealing the critical roles of community and workplace interventions in minimizing the pandemic's impact. The findings underscore the value of integrating network analytics with deep learning to streamline epidemic modeling, reduce computational costs, and enhance public health decision-making. This research offers a novel framework for effectively managing infectious disease outbreaks through targeted, data-driven interventions.

利用多输出机器学习方法和网络结构的动态观测值优化COVID-19干预策略。
2019冠状病毒病(COVID-19)大流行要求开发准确的模型来预测疾病动态并指导公共卫生干预措施。本研究利用COVASIM基于代理的模型,模拟了不同社会环境中COVID-19传播的1331种场景,重点关注学校、社区和工作接触层。我们从这些模拟中提取了复杂的网络测量,并应用深度学习算法来预测关键的流行病学结果,如感染、严重和危重病例。我们的方法获得了超过95%的r2值,证明了模型的鲁棒预测能力。此外,我们利用样条插值确定了最佳干预策略,揭示了社区和工作场所干预在最大限度地减少大流行影响方面的关键作用。研究结果强调了将网络分析与深度学习相结合,以简化流行病建模、降低计算成本和增强公共卫生决策的价值。这项研究为通过有针对性的、数据驱动的干预措施有效管理传染病暴发提供了一个新的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology Methods and Protocols
Biology Methods and Protocols Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.80
自引率
2.80%
发文量
28
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信