{"title":"Automated Task-Transfer Function Measurement for CT Image Quality Assessment Based on AAPM TG 233.","authors":"Choirul Anam, Riska Amilia, Ariij Naufal, Eko Hidayanto, Heri Sutanto, Lukmanda E Lubis, Toshioh Fujibuchi, Geoff Dougherty","doi":"10.3390/jimaging11080277","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to develop and validate software for the automatic measurement of the task-transfer function (TTF) based on the American Association of Physicists in Medicine (AAPM) Task Group (TG) 233. The software consists of two main stages: automatic placement of the region of interest (ROI) within circular objects of the phantoms and calculating the TTF. The software was developed on four CT phantom types: computational phantom, ACR 464 CT phantom, AAPM CT phantom, and Catphan<sup>®</sup> 604 phantom. Each phantom was tested with varying parameters, including spatial resolution level, slice thickness, and image reconstruction technique. The results of TTF were compared with manual measurements performed using ImQuest version 7.3.01 and iQmetix-CT version v1.2. The software successfully located ROIs at all circular objects within each phantom and measured accurate TTF with various contrast-to-noise ratios (CNRs) of all phantoms. The TTF results were comparable to those obtained with ImQuest and iQmetrix-CT. It was found that the TTF curves produced by the software are smoother than those produced by ImQuest. An algorithm for the automated measurement of TTF was successfully developed and validated. TTF measurement with our software is highly user-friendly, requiring only a single click from the user.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387721/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11080277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to develop and validate software for the automatic measurement of the task-transfer function (TTF) based on the American Association of Physicists in Medicine (AAPM) Task Group (TG) 233. The software consists of two main stages: automatic placement of the region of interest (ROI) within circular objects of the phantoms and calculating the TTF. The software was developed on four CT phantom types: computational phantom, ACR 464 CT phantom, AAPM CT phantom, and Catphan® 604 phantom. Each phantom was tested with varying parameters, including spatial resolution level, slice thickness, and image reconstruction technique. The results of TTF were compared with manual measurements performed using ImQuest version 7.3.01 and iQmetix-CT version v1.2. The software successfully located ROIs at all circular objects within each phantom and measured accurate TTF with various contrast-to-noise ratios (CNRs) of all phantoms. The TTF results were comparable to those obtained with ImQuest and iQmetrix-CT. It was found that the TTF curves produced by the software are smoother than those produced by ImQuest. An algorithm for the automated measurement of TTF was successfully developed and validated. TTF measurement with our software is highly user-friendly, requiring only a single click from the user.