The Role of Radiomic Analysis and Different Machine Learning Models in Prostate Cancer Diagnosis.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Eleni Bekou, Ioannis Seimenis, Athanasios Tsochatzis, Karafyllia Tziagkana, Nikolaos Kelekis, Savas Deftereos, Nikolaos Courcoutsakis, Michael I Koukourakis, Efstratios Karavasilis
{"title":"The Role of Radiomic Analysis and Different Machine Learning Models in Prostate Cancer Diagnosis.","authors":"Eleni Bekou, Ioannis Seimenis, Athanasios Tsochatzis, Karafyllia Tziagkana, Nikolaos Kelekis, Savas Deftereos, Nikolaos Courcoutsakis, Michael I Koukourakis, Efstratios Karavasilis","doi":"10.3390/jimaging11080250","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer (PCa) is the most common malignancy in men. Precise grading is crucial for the effective treatment approaches of PCa. Machine learning (ML) applied to biparametric Magnetic Resonance Imaging (bpMRI) radiomics holds promise for improving PCa diagnosis and prognosis. This study investigated the efficiency of seven ML models to diagnose the different PCa grades, changing the input variables. Our studied sample comprised 214 men who underwent bpMRI in different imaging centers. Seven ML algorithms were compared using radiomic features extracted from T2-weighted (T2W) and diffusion-weighted (DWI) MRI, with and without the inclusion of Prostate-Specific Antigen (PSA) values. The performance of the models was evaluated using the receiver operating characteristic curve analysis. The models' performance was strongly dependent on the input parameters. Radiomic features derived from T2WI and DWI, whether used independently or in combination, demonstrated limited clinical utility, with AUC values ranging from 0.703 to 0.807. However, incorporating the PSA index significantly improved the models' efficiency, regardless of lesion location or degree of malignancy, resulting in AUC values ranging from 0.784 to 1.00. There is evidence that ML methods, in combination with radiomic analysis, can contribute to solving differential diagnostic problems of prostate cancers. Also, optimization of the analysis method is critical, according to the results of our study.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387180/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11080250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Prostate cancer (PCa) is the most common malignancy in men. Precise grading is crucial for the effective treatment approaches of PCa. Machine learning (ML) applied to biparametric Magnetic Resonance Imaging (bpMRI) radiomics holds promise for improving PCa diagnosis and prognosis. This study investigated the efficiency of seven ML models to diagnose the different PCa grades, changing the input variables. Our studied sample comprised 214 men who underwent bpMRI in different imaging centers. Seven ML algorithms were compared using radiomic features extracted from T2-weighted (T2W) and diffusion-weighted (DWI) MRI, with and without the inclusion of Prostate-Specific Antigen (PSA) values. The performance of the models was evaluated using the receiver operating characteristic curve analysis. The models' performance was strongly dependent on the input parameters. Radiomic features derived from T2WI and DWI, whether used independently or in combination, demonstrated limited clinical utility, with AUC values ranging from 0.703 to 0.807. However, incorporating the PSA index significantly improved the models' efficiency, regardless of lesion location or degree of malignancy, resulting in AUC values ranging from 0.784 to 1.00. There is evidence that ML methods, in combination with radiomic analysis, can contribute to solving differential diagnostic problems of prostate cancers. Also, optimization of the analysis method is critical, according to the results of our study.

Abstract Image

Abstract Image

Abstract Image

放射组学分析和不同机器学习模型在前列腺癌诊断中的作用。
前列腺癌(PCa)是男性最常见的恶性肿瘤。准确的分级是有效治疗前列腺癌的关键。机器学习(ML)应用于双参数磁共振成像(bpMRI)放射组学有望改善前列腺癌的诊断和预后。本研究考察了在改变输入变量的情况下,七种ML模型对不同PCa等级的诊断效率。我们的研究样本包括214名男性,他们在不同的成像中心接受了bpMRI。使用从t2加权(T2W)和弥散加权(DWI) MRI提取的放射学特征,包括和不包括前列腺特异性抗原(PSA)值,对7种ML算法进行比较。采用受试者工作特性曲线分析对模型的性能进行评价。模型的性能在很大程度上依赖于输入参数。T2WI和DWI的放射学特征,无论是单独使用还是联合使用,均显示临床应用有限,AUC值范围为0.703至0.807。然而,无论病变位置或恶性程度如何,纳入PSA指数均显著提高了模型的效率,导致AUC值在0.784至1.00之间。有证据表明,ML方法与放射组学分析相结合,可以有助于解决前列腺癌的鉴别诊断问题。此外,根据我们的研究结果,分析方法的优化至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信