{"title":"A Vision Method for Detecting Citrus Separation Lines Using Line-Structured Light.","authors":"Qingcang Yu, Song Xue, Yang Zheng","doi":"10.3390/jimaging11080265","DOIUrl":null,"url":null,"abstract":"<p><p>The detection of citrus separation lines is a crucial step in the citrus processing industry. Inspired by the achievements of line-structured light technology in surface defect detection, this paper proposes a method for detecting citrus separation lines based on line-structured light. Firstly, a gamma-corrected Otsu method is employed to extract the laser stripe region from the image. Secondly, an improved skeleton extraction algorithm is employed to mitigate the bifurcation errors inherent in original skeleton extraction algorithms while simultaneously acquiring 3D point cloud data of the citrus surface. Finally, the least squares progressive iterative approximation algorithm is applied to approximate the ideal surface curve; subsequently, principal component analysis is used to derive the normals of this ideally fitted curve. The deviation between each point (along its corresponding normal direction) and the actual geometric characteristic curve is then adopted as a quantitative index for separation lines positioning. The average similarity between the extracted separation lines and the manually defined standard separation lines reaches 92.5%. In total, 95% of the points on the separation lines obtained by this method have an error of less than 4 pixels. Experimental results demonstrate that through quantitative deviation analysis of geometric features, automatic detection and positioning of the separation lines are achieved, satisfying the requirements of high precision and non-destructiveness for automatic citrus splitting.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387447/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11080265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The detection of citrus separation lines is a crucial step in the citrus processing industry. Inspired by the achievements of line-structured light technology in surface defect detection, this paper proposes a method for detecting citrus separation lines based on line-structured light. Firstly, a gamma-corrected Otsu method is employed to extract the laser stripe region from the image. Secondly, an improved skeleton extraction algorithm is employed to mitigate the bifurcation errors inherent in original skeleton extraction algorithms while simultaneously acquiring 3D point cloud data of the citrus surface. Finally, the least squares progressive iterative approximation algorithm is applied to approximate the ideal surface curve; subsequently, principal component analysis is used to derive the normals of this ideally fitted curve. The deviation between each point (along its corresponding normal direction) and the actual geometric characteristic curve is then adopted as a quantitative index for separation lines positioning. The average similarity between the extracted separation lines and the manually defined standard separation lines reaches 92.5%. In total, 95% of the points on the separation lines obtained by this method have an error of less than 4 pixels. Experimental results demonstrate that through quantitative deviation analysis of geometric features, automatic detection and positioning of the separation lines are achieved, satisfying the requirements of high precision and non-destructiveness for automatic citrus splitting.