PRISM: a Python package for interactive and integrated analysis of multiplexed tissue microarrays.

IF 2.8 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2025-08-21 eCollection Date: 2025-09-01 DOI:10.1093/nargab/lqaf114
Rafael Tubelleza, Aaron Kilgallon, Chin Wee Tan, James Monkman, John F Fraser, Arutha Kulasinghe
{"title":"PRISM: a Python package for interactive and integrated analysis of multiplexed tissue microarrays.","authors":"Rafael Tubelleza, Aaron Kilgallon, Chin Wee Tan, James Monkman, John F Fraser, Arutha Kulasinghe","doi":"10.1093/nargab/lqaf114","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue microarrays (TMAs) enable researchers to analyse hundreds of tissue samples simultaneously by embedding multiple samples into single arrays, enabling conservation of valuable tissue samples and experimental reagents. Moreover, profiling TMAs allows efficient screening of tissue samples for translational and clinical applications. Multiplexed imaging technologies allow for spatial profiling of proteins at single-cell resolution, providing insights into tumour microenvironments and disease mechanisms. High-plex spatial single-cell protein profiling is a powerful tool for biomarker discovery and translational cancer research; however, there remain limited options for end-to-end computational analysis of this type of data. Here, we introduce PRISM, a Python package for interactive, end-to-end analyses of TMAs with a focus on translational and clinical research using multiplexed proteomic data. PRISM leverages the SpatialData framework to standardize data storage and ensure interoperability with single-cell and spatial analysis tools. It consists of two main components: TMA Image Analysis for marker-based tissue masking, TMA dearraying, cell segmentation, and single-cell feature extraction; and AnnData Analysis for quality control, clustering, iterative cell-type annotation, and spatial analysis. Integrated as a plugin within napari, PRISM provides an intuitive and purely interactive graphical interface for real time and human-in-the-loop analyses. PRISM supports efficient multi-resolution image processing and accelerates bioinformatics workflows using efficient scalable data structures, parallelization and GPU acceleration. By combining modular flexibility, computational efficiency, and a completely interactive interface, PRISM simplifies the translation of raw multiplexed images to actionable clinical insights, empowering researchers to explore and interact effectively with spatial omics data.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 3","pages":"lqaf114"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12370624/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqaf114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Tissue microarrays (TMAs) enable researchers to analyse hundreds of tissue samples simultaneously by embedding multiple samples into single arrays, enabling conservation of valuable tissue samples and experimental reagents. Moreover, profiling TMAs allows efficient screening of tissue samples for translational and clinical applications. Multiplexed imaging technologies allow for spatial profiling of proteins at single-cell resolution, providing insights into tumour microenvironments and disease mechanisms. High-plex spatial single-cell protein profiling is a powerful tool for biomarker discovery and translational cancer research; however, there remain limited options for end-to-end computational analysis of this type of data. Here, we introduce PRISM, a Python package for interactive, end-to-end analyses of TMAs with a focus on translational and clinical research using multiplexed proteomic data. PRISM leverages the SpatialData framework to standardize data storage and ensure interoperability with single-cell and spatial analysis tools. It consists of two main components: TMA Image Analysis for marker-based tissue masking, TMA dearraying, cell segmentation, and single-cell feature extraction; and AnnData Analysis for quality control, clustering, iterative cell-type annotation, and spatial analysis. Integrated as a plugin within napari, PRISM provides an intuitive and purely interactive graphical interface for real time and human-in-the-loop analyses. PRISM supports efficient multi-resolution image processing and accelerates bioinformatics workflows using efficient scalable data structures, parallelization and GPU acceleration. By combining modular flexibility, computational efficiency, and a completely interactive interface, PRISM simplifies the translation of raw multiplexed images to actionable clinical insights, empowering researchers to explore and interact effectively with spatial omics data.

PRISM:用于多路组织微阵列的交互式和集成分析的Python包。
组织微阵列(TMAs)通过将多个样本嵌入到单个阵列中,使研究人员能够同时分析数百个组织样本,从而使有价值的组织样本和实验试剂得以保存。此外,分析tma可以有效筛选组织样本,用于翻译和临床应用。多路成像技术允许在单细胞分辨率下对蛋白质进行空间分析,从而深入了解肿瘤微环境和疾病机制。高plex空间单细胞蛋白谱分析是生物标志物发现和转化性癌症研究的有力工具;然而,对这类数据进行端到端计算分析的选择仍然有限。在这里,我们介绍PRISM,这是一个Python包,用于交互式端到端tma分析,重点是使用多路蛋白质组学数据进行翻译和临床研究。PRISM利用SpatialData框架来标准化数据存储,并确保与单细胞和空间分析工具的互操作性。它由两个主要部分组成:基于标记的组织掩蔽的TMA图像分析、TMA绘制、细胞分割和单细胞特征提取;以及用于质量控制、聚类、迭代细胞类型注释和空间分析的AnnData Analysis。PRISM作为一个插件集成在napari中,为实时和人在循环分析提供了一个直观和纯交互的图形界面。PRISM支持高效的多分辨率图像处理,并使用高效的可扩展数据结构、并行化和GPU加速来加速生物信息学工作流程。通过结合模块化的灵活性、计算效率和完全交互的界面,PRISM简化了从原始多路图像到可操作的临床见解的转换,使研究人员能够有效地探索和交互空间组学数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信