Simulating relational event history data: why and how.

IF 2.3 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS
Journal of Computational Social Science Pub Date : 2025-01-01 Epub Date: 2025-08-21 DOI:10.1007/s42001-025-00427-2
Rumana Lakdawala, Joris Mulder, Roger Leenders
{"title":"Simulating relational event history data: why and how.","authors":"Rumana Lakdawala, Joris Mulder, Roger Leenders","doi":"10.1007/s42001-025-00427-2","DOIUrl":null,"url":null,"abstract":"<p><p>Many important social phenomena are characterized by repeated interactions among individuals over time such as email exchanges in an organization or face-to-face interactions in a classroom. To understand the underlying mechanisms of social interaction dynamics, statistical simulation techniques for network data at fine temporal granularity are crucial. This article makes two contributions to the field. First, we present statistical frameworks to simulate relational event networks under dyadic and actor-oriented relational event models implemented in an R package remulate. Second, we show how this simulation framework can address key challenges in temporal social network analysis through five case studies. The first study illustrates the necessity of simulation based techniques for model assessment, using a network of criminal gangs. The second shows how simulation supports social theory development which is illustrated via optimal distinctiveness theory. The third explores simulation for understanding the effects of network interventions. In the fourth study, we illustrate how simulation-based analysis can be used to assess the sensitivity of relational event models. The fifth study demonstrates how simulation frameworks can be used to make predictions about future relational dynamics. Through these case studies and software, researchers will be able to better understand social interaction dynamics using relational event data from real-life networks.</p>","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":"8 4","pages":"92"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12370817/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Social Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42001-025-00427-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Many important social phenomena are characterized by repeated interactions among individuals over time such as email exchanges in an organization or face-to-face interactions in a classroom. To understand the underlying mechanisms of social interaction dynamics, statistical simulation techniques for network data at fine temporal granularity are crucial. This article makes two contributions to the field. First, we present statistical frameworks to simulate relational event networks under dyadic and actor-oriented relational event models implemented in an R package remulate. Second, we show how this simulation framework can address key challenges in temporal social network analysis through five case studies. The first study illustrates the necessity of simulation based techniques for model assessment, using a network of criminal gangs. The second shows how simulation supports social theory development which is illustrated via optimal distinctiveness theory. The third explores simulation for understanding the effects of network interventions. In the fourth study, we illustrate how simulation-based analysis can be used to assess the sensitivity of relational event models. The fifth study demonstrates how simulation frameworks can be used to make predictions about future relational dynamics. Through these case studies and software, researchers will be able to better understand social interaction dynamics using relational event data from real-life networks.

Abstract Image

Abstract Image

Abstract Image

模拟关系事件历史数据:原因和方法。
许多重要的社会现象的特点是个体之间随着时间的推移而重复互动,例如组织中的电子邮件交流或课堂上的面对面互动。为了理解社会互动动态的潜在机制,精细时间粒度的网络数据统计模拟技术至关重要。这篇文章对这个领域有两个贡献。首先,我们提出了统计框架来模拟在二元和面向参与者的关系事件模型下的关系事件网络,这些模型在R包中实现。其次,我们通过五个案例研究展示了该模拟框架如何解决时间社会网络分析中的关键挑战。第一项研究说明了使用犯罪团伙网络进行模型评估的基于模拟技术的必要性。第二部分显示了模拟如何支持社会理论的发展,这是通过最优独特性理论来说明的。第三篇探讨了理解网络干预效果的模拟。在第四项研究中,我们说明了如何使用基于模拟的分析来评估关系事件模型的敏感性。第五项研究展示了如何使用模拟框架来预测未来的关系动态。通过这些案例研究和软件,研究人员将能够利用来自现实生活网络的关系事件数据更好地理解社会互动动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Social Science
Journal of Computational Social Science SOCIAL SCIENCES, MATHEMATICAL METHODS-
CiteScore
6.20
自引率
6.20%
发文量
30
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信