Shishir K Sarker, Ryan T Dapkus, Diana M Byrne, Alan E Fryar, Justin M Hutchison
{"title":"Quantifying Temporal Dynamics of <i>E. coli</i> Concentration and Quantitative Microbial Risk Assessment of Pathogen in a Karst Basin.","authors":"Shishir K Sarker, Ryan T Dapkus, Diana M Byrne, Alan E Fryar, Justin M Hutchison","doi":"10.3390/w17050745","DOIUrl":null,"url":null,"abstract":"<p><p>Karst aquifers can be highly productive water sources but are vulnerable to contamination by pathogens because of integrated surface and subsurface drainage. Our study focuses on the karstic Royal Spring basin in Kentucky, encompassing urban and agricultural land uses. The city of Georgetown distributes treated water from Royal Spring to over 33,000 customers. We examined <i>E. coli</i> dynamics at Royal Spring from June 2021 through June 2022, assessing variability under wet versus dry weather conditions. We also used quantitative microbial risk assessment (QMRA) to estimate potential health risks from the pathogenic bacterium <i>E. coli</i> O157:H7. <i>E. coli</i> concentrations in weekly water samples varied from 12 to 1732.8 MPN/100 mL, with a geometric mean of 117.2 MPN/100 mL. The mean concentration in wet periods was approximately double that during dry conditions. Because the pathogen was not detected by quantitative PCR (qPCR), we conducted QMRA based on literature data for water treatment plant operations (occupational) and recreational activities near the spring. The median probability of annual infection was 5.11 × 10<sup>-3</sup> for occupational exposure and 1.45 × 10<sup>-2</sup> for recreational exposure. Uncertainty and sensitivity analyses revealed that health risks were most sensitive to the pathogen/<i>E. coli</i> ratio and ingestion rate. Although the pathogen was not detected by qPCR, the presence of <i>E. coli</i> suggests potential fecal contamination. This highlights the importance of continued monitoring and investigation of different detection methods to better understand potential health risks in karst systems.</p>","PeriodicalId":23788,"journal":{"name":"Water","volume":"17 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12369636/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w17050745","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Karst aquifers can be highly productive water sources but are vulnerable to contamination by pathogens because of integrated surface and subsurface drainage. Our study focuses on the karstic Royal Spring basin in Kentucky, encompassing urban and agricultural land uses. The city of Georgetown distributes treated water from Royal Spring to over 33,000 customers. We examined E. coli dynamics at Royal Spring from June 2021 through June 2022, assessing variability under wet versus dry weather conditions. We also used quantitative microbial risk assessment (QMRA) to estimate potential health risks from the pathogenic bacterium E. coli O157:H7. E. coli concentrations in weekly water samples varied from 12 to 1732.8 MPN/100 mL, with a geometric mean of 117.2 MPN/100 mL. The mean concentration in wet periods was approximately double that during dry conditions. Because the pathogen was not detected by quantitative PCR (qPCR), we conducted QMRA based on literature data for water treatment plant operations (occupational) and recreational activities near the spring. The median probability of annual infection was 5.11 × 10-3 for occupational exposure and 1.45 × 10-2 for recreational exposure. Uncertainty and sensitivity analyses revealed that health risks were most sensitive to the pathogen/E. coli ratio and ingestion rate. Although the pathogen was not detected by qPCR, the presence of E. coli suggests potential fecal contamination. This highlights the importance of continued monitoring and investigation of different detection methods to better understand potential health risks in karst systems.
期刊介绍:
Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.