{"title":"From Mechanisms to Therapy: Exploring the Role of Ferroptosis in Cervical Cancer Transformation and Treatment.","authors":"Zhenlei Wang, Yuanyuan Xiao, Ranzhong Chen, Erqun Tang, Shuangyang Tang","doi":"10.1111/tra.70018","DOIUrl":null,"url":null,"abstract":"<p><p>Cervical cancer (CC) exerts a considerable impact on women's health worldwide and presents persistent challenges to conventional therapeutic strategies due to its propensity for distant metastasis, postoperative recurrence, and variable drug resistance. Ferroptosis, a recently identified type of programmed cell death, offers promising potential for a therapeutic approach for CC. This paper reviews the regulatory processes involved in ferroptosis, including the sequential events leading to cell membrane rupture via lipid peroxidation and the changes in ferroptosis sensitivity as cervical cells progress from a healthy to a malignant condition. Additionally, the dynamic relationship between ferroptosis and CC transformation driven by high-risk HPV (HR-HPV) infection is examined, with a particular focus on how HR-HPV E6/E7 proteins influence ferroptosis sensitivity. By examining the factors associated with ferroptosis, this review provides insights into CC progression and prognosis. Furthermore, therapeutic strategies targeting ferroptosis are discussed, offering novel perspectives for effective treatment options for CC.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"26 7-9","pages":"e70018"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/tra.70018","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cervical cancer (CC) exerts a considerable impact on women's health worldwide and presents persistent challenges to conventional therapeutic strategies due to its propensity for distant metastasis, postoperative recurrence, and variable drug resistance. Ferroptosis, a recently identified type of programmed cell death, offers promising potential for a therapeutic approach for CC. This paper reviews the regulatory processes involved in ferroptosis, including the sequential events leading to cell membrane rupture via lipid peroxidation and the changes in ferroptosis sensitivity as cervical cells progress from a healthy to a malignant condition. Additionally, the dynamic relationship between ferroptosis and CC transformation driven by high-risk HPV (HR-HPV) infection is examined, with a particular focus on how HR-HPV E6/E7 proteins influence ferroptosis sensitivity. By examining the factors associated with ferroptosis, this review provides insights into CC progression and prognosis. Furthermore, therapeutic strategies targeting ferroptosis are discussed, offering novel perspectives for effective treatment options for CC.
期刊介绍:
Traffic encourages and facilitates the publication of papers in any field relating to intracellular transport in health and disease. Traffic papers span disciplines such as developmental biology, neuroscience, innate and adaptive immunity, epithelial cell biology, intracellular pathogens and host-pathogen interactions, among others using any eukaryotic model system. Areas of particular interest include protein, nucleic acid and lipid traffic, molecular motors, intracellular pathogens, intracellular proteolysis, nuclear import and export, cytokinesis and the cell cycle, the interface between signaling and trafficking or localization, protein translocation, the cell biology of adaptive an innate immunity, organelle biogenesis, metabolism, cell polarity and organization, and organelle movement.
All aspects of the structural, molecular biology, biochemistry, genetics, morphology, intracellular signaling and relationship to hereditary or infectious diseases will be covered. Manuscripts must provide a clear conceptual or mechanistic advance. The editors will reject papers that require major changes, including addition of significant experimental data or other significant revision.
Traffic will consider manuscripts of any length, but encourages authors to limit their papers to 16 typeset pages or less.