{"title":"<i>In silico and in vivo</i> toxicity assessment of cysteamine-modified nanoparticles: implications for pharmacotherapy application.","authors":"Babatunde Alabi, Sodiq Kolawole Lawal, Samuel Oluwaseun Olojede, Amina Suleiman, Olamide Adesanya, Diana Odey Ochuole, Fisayo Nathaniel Ogunleye, Benneth Ben-Azu","doi":"10.1080/15376516.2025.2538128","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Given the increasing therapeutic potential of cysteamine (CYST) at appropriate doses and expert concerns regarding the toxicity of nanoparticles, this study aimed to assess the toxicity profile of both CYST and silver nanoparticles conjugated with cysteamine (CYST-AgNPs).</p><p><strong>Methods: </strong>For the acute study, a 300 mg/kg starting dose of CYST (i.p administration) produced a toxic response in some mice (<i>n</i> = 3/group), and a 300 mg/kg beginning dose of CYST-AgNPs produced delayed mild toxicity. Lower doses of CYST and CYST-AgNPs (50, 100, and 200 mg/kg; <i>n</i> = 3/group) were administered (i.p) for further acute toxicological evaluation. The sub-acute toxicity test was conducted for 21 days, and female mice (<i>n</i> = 5/group) were divided into control, CYST (25 and 50 mg/kg), and CYST-AgNPs (25 and 50 mg/kg). AgNPs and CYST-AgNPs were characterized with FTIR spectroscopy, UV spectrophotometer, HR-TEM, and SEM-EDX. Blood samples were collected <i>via</i> cardiac puncture and processed according to the standard hematological analysis protocols.</p><p><strong>Results: </strong>The UV-vis absorbance wavelength range of 400-800 nm was observed. HR-TEM showed mostly spherical nanoparticles ranging from 30 to 90 nm. FTIR showed a functional group of O-H, C = C stretching vibration for AgNPs and O-H, S-H, N-H, C = C stretching vibration for CYST-AgNPs. EDX spectroscopy showed silver, carbon, oxygen, sodium, and chloride elements for AgNPs and CYST-AgNPs. The CYST decreased the WBC, RBC, and platelet counts significantly (<i>p</i> < 0.05), while CYST-AgNPs (25 and 50 mg/kg) reduced only the RBC counts (<i>p</i> < 0.05).</p><p><strong>Conclusion: </strong>This investigation presents the <i>in vivo</i> safety analysis and pharmacological potential of cysteamine-modified silver nanoparticles (CYST-AgNPs), suggesting enhanced therapeutic activity.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"1-19"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2025.2538128","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Given the increasing therapeutic potential of cysteamine (CYST) at appropriate doses and expert concerns regarding the toxicity of nanoparticles, this study aimed to assess the toxicity profile of both CYST and silver nanoparticles conjugated with cysteamine (CYST-AgNPs).
Methods: For the acute study, a 300 mg/kg starting dose of CYST (i.p administration) produced a toxic response in some mice (n = 3/group), and a 300 mg/kg beginning dose of CYST-AgNPs produced delayed mild toxicity. Lower doses of CYST and CYST-AgNPs (50, 100, and 200 mg/kg; n = 3/group) were administered (i.p) for further acute toxicological evaluation. The sub-acute toxicity test was conducted for 21 days, and female mice (n = 5/group) were divided into control, CYST (25 and 50 mg/kg), and CYST-AgNPs (25 and 50 mg/kg). AgNPs and CYST-AgNPs were characterized with FTIR spectroscopy, UV spectrophotometer, HR-TEM, and SEM-EDX. Blood samples were collected via cardiac puncture and processed according to the standard hematological analysis protocols.
Results: The UV-vis absorbance wavelength range of 400-800 nm was observed. HR-TEM showed mostly spherical nanoparticles ranging from 30 to 90 nm. FTIR showed a functional group of O-H, C = C stretching vibration for AgNPs and O-H, S-H, N-H, C = C stretching vibration for CYST-AgNPs. EDX spectroscopy showed silver, carbon, oxygen, sodium, and chloride elements for AgNPs and CYST-AgNPs. The CYST decreased the WBC, RBC, and platelet counts significantly (p < 0.05), while CYST-AgNPs (25 and 50 mg/kg) reduced only the RBC counts (p < 0.05).
Conclusion: This investigation presents the in vivo safety analysis and pharmacological potential of cysteamine-modified silver nanoparticles (CYST-AgNPs), suggesting enhanced therapeutic activity.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment.