Meruyert Imanbekova, Mohul Sharma, Sebastian Wachsmann-Hogiu
{"title":"On the dilemma of using single EV analysis for liquid biopsy: the challenge of low abundance of tumor EVs in blood.","authors":"Meruyert Imanbekova, Mohul Sharma, Sebastian Wachsmann-Hogiu","doi":"10.7150/thno.115131","DOIUrl":null,"url":null,"abstract":"<p><p>Single extracellular vesicle (EV) analysis holds great promise for non-invasive cancer diagnostics, offering insights into tumor-specific biomarkers and enabling personalized treatment strategies. However, a significant challenge in the path towards clinical applications is the low abundance of tumor-derived EVs (<i>tEV</i>s) in biofluids, which reduces the sensitivity, specificity, and accuracy of detection. This review emphasizes the importance of analyzing a large number of single EVs to overcome this limitation. We estimate that less than 0.1% of total EVs could be from cancer cells in a mixed sample. Additionally, the development of more efficient <i>tEV</i>s isolation methods and targeted enrichment strategies, as well as high-throughput analysis techniques are crucial for improving diagnostic accuracy and advancing liquid biopsy applications in cancer care.</p>","PeriodicalId":22932,"journal":{"name":"Theranostics","volume":"15 16","pages":"8031-8048"},"PeriodicalIF":13.3000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12374542/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theranostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7150/thno.115131","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Single extracellular vesicle (EV) analysis holds great promise for non-invasive cancer diagnostics, offering insights into tumor-specific biomarkers and enabling personalized treatment strategies. However, a significant challenge in the path towards clinical applications is the low abundance of tumor-derived EVs (tEVs) in biofluids, which reduces the sensitivity, specificity, and accuracy of detection. This review emphasizes the importance of analyzing a large number of single EVs to overcome this limitation. We estimate that less than 0.1% of total EVs could be from cancer cells in a mixed sample. Additionally, the development of more efficient tEVs isolation methods and targeted enrichment strategies, as well as high-throughput analysis techniques are crucial for improving diagnostic accuracy and advancing liquid biopsy applications in cancer care.
期刊介绍:
Theranostics serves as a pivotal platform for the exchange of clinical and scientific insights within the diagnostic and therapeutic molecular and nanomedicine community, along with allied professions engaged in integrating molecular imaging and therapy. As a multidisciplinary journal, Theranostics showcases innovative research articles spanning fields such as in vitro diagnostics and prognostics, in vivo molecular imaging, molecular therapeutics, image-guided therapy, biosensor technology, nanobiosensors, bioelectronics, system biology, translational medicine, point-of-care applications, and personalized medicine. Encouraging a broad spectrum of biomedical research with potential theranostic applications, the journal rigorously peer-reviews primary research, alongside publishing reviews, news, and commentary that aim to bridge the gap between the laboratory, clinic, and biotechnology industries.