Luis A Vargas-Mieles, Paul D W Kirk, Chris Wallace
{"title":"Outcome-guided spike-and-slab Lasso Biclustering: A Novel Approach for Enhancing Biclustering Techniques for Gene Expression Analysis.","authors":"Luis A Vargas-Mieles, Paul D W Kirk, Chris Wallace","doi":"10.1007/s11222-025-10709-4","DOIUrl":null,"url":null,"abstract":"<p><p>Biclustering has gained interest in gene expression data analysis due to its ability to identify groups of samples that exhibit similar behaviour in specific subsets of genes (or vice versa), in contrast to traditional clustering methods that classify samples based on all genes. Despite advances, biclustering remains a challenging problem, even with cutting-edge methodologies. This paper introduces an extension of the recently proposed Spike-and-Slab Lasso Biclustering (SSLB) algorithm, termed Outcome-Guided SSLB (OG-SSLB), aimed at enhancing the identification of biclusters in gene expression analysis. Our proposed approach integrates disease outcomes into the biclustering framework through Bayesian profile regression. By leveraging additional clinical information, OG-SSLB improves the interpretability and relevance of the resulting biclusters. Comprehensive simulations and numerical experiments demonstrate that OG-SSLB achieves superior performance, with improved accuracy in estimating the number of clusters and higher consensus scores compared to the original SSLB method. Furthermore, OG-SSLB effectively identifies meaningful patterns and associations between gene expression profiles and disease states. These promising results demonstrate the effectiveness of OG-SSLB in advancing biclustering techniques, providing a powerful tool for uncovering biologically relevant insights. The OGSSLB software can be found as an R/C++ package at https://github.com/luisvargasmieles/OGSSLB.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":"35 6","pages":"179"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12394340/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-025-10709-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Biclustering has gained interest in gene expression data analysis due to its ability to identify groups of samples that exhibit similar behaviour in specific subsets of genes (or vice versa), in contrast to traditional clustering methods that classify samples based on all genes. Despite advances, biclustering remains a challenging problem, even with cutting-edge methodologies. This paper introduces an extension of the recently proposed Spike-and-Slab Lasso Biclustering (SSLB) algorithm, termed Outcome-Guided SSLB (OG-SSLB), aimed at enhancing the identification of biclusters in gene expression analysis. Our proposed approach integrates disease outcomes into the biclustering framework through Bayesian profile regression. By leveraging additional clinical information, OG-SSLB improves the interpretability and relevance of the resulting biclusters. Comprehensive simulations and numerical experiments demonstrate that OG-SSLB achieves superior performance, with improved accuracy in estimating the number of clusters and higher consensus scores compared to the original SSLB method. Furthermore, OG-SSLB effectively identifies meaningful patterns and associations between gene expression profiles and disease states. These promising results demonstrate the effectiveness of OG-SSLB in advancing biclustering techniques, providing a powerful tool for uncovering biologically relevant insights. The OGSSLB software can be found as an R/C++ package at https://github.com/luisvargasmieles/OGSSLB.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.