{"title":"A Neural Network Integrated Accelerated Failure Time-Based Mixture Cure Model.","authors":"Wisdom Aselisewine, Suvra Pal","doi":"10.1007/s11222-025-10674-y","DOIUrl":null,"url":null,"abstract":"<p><p>The mixture cure rate model (MCM) is commonly used for analyzing survival data with a cured subgroup. While the prevailing approach to modeling the probability of cure involves a generalized linear model using a known parametric link function, such as the logit link function, it has limitations in capturing the complex effects of covariates on cure probability. This paper introduces a novel MCM employing a neural network-based classifier for cure probability and an accelerated failure time structure for the survival distribution of uncured patients. An expectation maximization algorithm is developed for parameter estimation. Simulation results demonstrate the superior performance of the proposed model in capturing non-linear classification boundaries compared to logit-based and spline-based MCMs, as well as other machine learning algorithms. This enhances the accuracy and precision of cured probability estimates, improving predictive accuracy. The proposed model and estimation method are applied to survival data on leukemia cancer patients, showcasing their effectiveness.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":"35 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12369597/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-025-10674-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The mixture cure rate model (MCM) is commonly used for analyzing survival data with a cured subgroup. While the prevailing approach to modeling the probability of cure involves a generalized linear model using a known parametric link function, such as the logit link function, it has limitations in capturing the complex effects of covariates on cure probability. This paper introduces a novel MCM employing a neural network-based classifier for cure probability and an accelerated failure time structure for the survival distribution of uncured patients. An expectation maximization algorithm is developed for parameter estimation. Simulation results demonstrate the superior performance of the proposed model in capturing non-linear classification boundaries compared to logit-based and spline-based MCMs, as well as other machine learning algorithms. This enhances the accuracy and precision of cured probability estimates, improving predictive accuracy. The proposed model and estimation method are applied to survival data on leukemia cancer patients, showcasing their effectiveness.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.