{"title":"Uncovering Enzyme-Specific Post-Translational Modifications: An Overview of Current Methods.","authors":"Nashira H Ridgeway, Kyle K Biggar","doi":"10.3390/proteomes13030037","DOIUrl":null,"url":null,"abstract":"<p><p>Post-translational modifications (PTMs) govern a multitude of protein functions within the cell, surpassing the basic function(s) encoded directly within the amino acid sequence. Despite the historical discovery of PTMs dating back over a century, recent technological advancements have facilitated the rapid expansion of the known PTM landscape. However, the elucidation of enzyme-substrate relationships responsible for PTMs, particularly for those less studied, remains a challenging endeavor. This review provides an extensive overview of methods employed in the discovery of enzyme-specific substrates for PTM catalysis. Beginning with traditional experimental approaches rooted in chemistry, biochemistry and cell biology, this review progresses to recently developed computational strategies tailored for identifying enzyme-substrate interactions. The analysis reflects on the remarkable progress achieved in PTM research to date, underscoring the increasing role of computational and high-throughput techniques in expediting enzyme-substrate discovery. Furthermore, it highlights the potential of artificial intelligence to revolutionize PTM research and emphasizes the importance of unbiased high-throughput analysis in advancing our understanding of PTM networks. Ultimately, the review advocates for the integration of sophisticated computational strategies with experimental techniques to unravel the complex enzyme-substrate networks governing PTM-mediated cellular processes.</p>","PeriodicalId":20877,"journal":{"name":"Proteomes","volume":"13 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12371983/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/proteomes13030037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Post-translational modifications (PTMs) govern a multitude of protein functions within the cell, surpassing the basic function(s) encoded directly within the amino acid sequence. Despite the historical discovery of PTMs dating back over a century, recent technological advancements have facilitated the rapid expansion of the known PTM landscape. However, the elucidation of enzyme-substrate relationships responsible for PTMs, particularly for those less studied, remains a challenging endeavor. This review provides an extensive overview of methods employed in the discovery of enzyme-specific substrates for PTM catalysis. Beginning with traditional experimental approaches rooted in chemistry, biochemistry and cell biology, this review progresses to recently developed computational strategies tailored for identifying enzyme-substrate interactions. The analysis reflects on the remarkable progress achieved in PTM research to date, underscoring the increasing role of computational and high-throughput techniques in expediting enzyme-substrate discovery. Furthermore, it highlights the potential of artificial intelligence to revolutionize PTM research and emphasizes the importance of unbiased high-throughput analysis in advancing our understanding of PTM networks. Ultimately, the review advocates for the integration of sophisticated computational strategies with experimental techniques to unravel the complex enzyme-substrate networks governing PTM-mediated cellular processes.
ProteomesBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.50
自引率
3.00%
发文量
37
审稿时长
11 weeks
期刊介绍:
Proteomes (ISSN 2227-7382) is an open access, peer reviewed journal on all aspects of proteome science. Proteomes covers the multi-disciplinary topics of structural and functional biology, protein chemistry, cell biology, methodology used for protein analysis, including mass spectrometry, protein arrays, bioinformatics, HTS assays, etc. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers. Scope: -whole proteome analysis of any organism -disease/pharmaceutical studies -comparative proteomics -protein-ligand/protein interactions -structure/functional proteomics -gene expression -methodology -bioinformatics -applications of proteomics