{"title":"The Microbiome Shaping Cancer Development, Progression, and Therapeutic Response.","authors":"Rana Salihoglu","doi":"10.1152/physiolgenomics.00091.2025","DOIUrl":null,"url":null,"abstract":"<p><p>The human microbiome is emerging as a key regulator of cancer biology, modulating tumor development, immune dynamics, and therapeutic responses across diverse malignancies. In this review, recent insights are synthesized regarding how microbial communities (bacterial, fungal, and viral) shape oncogenic signaling, immune checkpoint blockade (ICB) efficacy, and metabolic reprogramming in lung, pancreatic, colorectal, breast, cervical, melanoma, and gastric cancers. Mechanistic links between microbial metabolites, intratumoral colonization, and host immune phenotypes are highlighted proposing that the microbiome constitutes a programmable axis within the tumor immune-metabolic ecosystem. Drawing on multi-omics integration and translational studies, a shift from associative profiling toward causal, spatially resolved, and intervention-ready frameworks is proposed. This perspective positions the microbiome not as a passive bystander, but as a co-evolving participant in tumor progression and treatment response, with the potential to reshape diagnostics, prognostics, and therapeutic strategies in precision oncology.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00091.2025","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The human microbiome is emerging as a key regulator of cancer biology, modulating tumor development, immune dynamics, and therapeutic responses across diverse malignancies. In this review, recent insights are synthesized regarding how microbial communities (bacterial, fungal, and viral) shape oncogenic signaling, immune checkpoint blockade (ICB) efficacy, and metabolic reprogramming in lung, pancreatic, colorectal, breast, cervical, melanoma, and gastric cancers. Mechanistic links between microbial metabolites, intratumoral colonization, and host immune phenotypes are highlighted proposing that the microbiome constitutes a programmable axis within the tumor immune-metabolic ecosystem. Drawing on multi-omics integration and translational studies, a shift from associative profiling toward causal, spatially resolved, and intervention-ready frameworks is proposed. This perspective positions the microbiome not as a passive bystander, but as a co-evolving participant in tumor progression and treatment response, with the potential to reshape diagnostics, prognostics, and therapeutic strategies in precision oncology.
期刊介绍:
The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.