The skeletal muscle of aged male mice exhibits sustained growth regulatory transcriptional profile following glucocorticoid exposure compared with young males.

IF 2.5 4区 生物学 Q3 CELL BIOLOGY
Physiological genomics Pub Date : 2025-10-01 Epub Date: 2025-08-29 DOI:10.1152/physiolgenomics.00083.2025
Grant R Laskin, Cynthia Vied, David S Waddell, Bradley S Gordon
{"title":"The skeletal muscle of aged male mice exhibits sustained growth regulatory transcriptional profile following glucocorticoid exposure compared with young males.","authors":"Grant R Laskin, Cynthia Vied, David S Waddell, Bradley S Gordon","doi":"10.1152/physiolgenomics.00083.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Excess glucocorticoids induce skeletal muscle myopathy by changing gene expression. Advanced age augments glucocorticoid-mediated muscle phenotypes, yet the transcriptional responses underlying those augmented phenotypes are unclear. The purpose of this study was to define the glucocorticoid-responsive transcriptome in young and aged muscle following both acute and more prolonged glucocorticoid treatment. Young (4-mo-old) or aged (24-mo-old) male mice were administered either an acute injection of dexamethasone (DEX) or vehicle or daily DEX or vehicle injections for 7 days. Muscles were harvested 6.5 h after the final or only injection. The tibialis anterior (TA) was selected for RNA sequencing analysis as DEX treatment lowered TA mass specifically in aged males. In silico analyses identified enriched pathways and transcription factors predicted to regulate DEX-sensitive genes. Acute DEX altered similar numbers of genes in young (950) versus aged males (913), although aged males had greater magnitudes of fold change. After 7 days of DEX treatment, aged muscle exhibited more DEGs compared with acute exposure (1,196 vs. 913), whereas young muscle exhibited fewer DEGs than after acute exposure (599 vs. 950). In aged males, glucocorticoid-sensitive genes were consistently enriched for growth regulatory processes across both time points, a pattern that was not evident in young males. Despite those age-associated transcriptional differences, the transcription factors predicted to regulate the glucocorticoid-sensitive genes were similar in young and aged males. These data expand our understanding into how aging modifies the transcriptional response to excess glucocorticoids in skeletal muscle.<b>NEW & NOTEWORTHY</b> Glucocorticoids promote mass loss in certain muscles with advanced age but not at younger ages. In a muscle whose mass is lost in response to elevated glucocorticoids only in advanced age in males, we show that glucocorticoids initiate a unique and exaggerated transcriptional profile after both acute exposure to the hormone and after prolonged treatment that is consistent with muscle atrophy. These findings expand our understanding of the effect primary aging has on glucocorticoid-induced atrophy in males.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"603-614"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12455622/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00083.2025","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Excess glucocorticoids induce skeletal muscle myopathy by changing gene expression. Advanced age augments glucocorticoid-mediated muscle phenotypes, yet the transcriptional responses underlying those augmented phenotypes are unclear. The purpose of this study was to define the glucocorticoid-responsive transcriptome in young and aged muscle following both acute and more prolonged glucocorticoid treatment. Young (4-mo-old) or aged (24-mo-old) male mice were administered either an acute injection of dexamethasone (DEX) or vehicle or daily DEX or vehicle injections for 7 days. Muscles were harvested 6.5 h after the final or only injection. The tibialis anterior (TA) was selected for RNA sequencing analysis as DEX treatment lowered TA mass specifically in aged males. In silico analyses identified enriched pathways and transcription factors predicted to regulate DEX-sensitive genes. Acute DEX altered similar numbers of genes in young (950) versus aged males (913), although aged males had greater magnitudes of fold change. After 7 days of DEX treatment, aged muscle exhibited more DEGs compared with acute exposure (1,196 vs. 913), whereas young muscle exhibited fewer DEGs than after acute exposure (599 vs. 950). In aged males, glucocorticoid-sensitive genes were consistently enriched for growth regulatory processes across both time points, a pattern that was not evident in young males. Despite those age-associated transcriptional differences, the transcription factors predicted to regulate the glucocorticoid-sensitive genes were similar in young and aged males. These data expand our understanding into how aging modifies the transcriptional response to excess glucocorticoids in skeletal muscle.NEW & NOTEWORTHY Glucocorticoids promote mass loss in certain muscles with advanced age but not at younger ages. In a muscle whose mass is lost in response to elevated glucocorticoids only in advanced age in males, we show that glucocorticoids initiate a unique and exaggerated transcriptional profile after both acute exposure to the hormone and after prolonged treatment that is consistent with muscle atrophy. These findings expand our understanding of the effect primary aging has on glucocorticoid-induced atrophy in males.

与年轻雄性小鼠相比,老年雄性小鼠的骨骼肌在糖皮质激素暴露后表现出持续的生长调控转录谱。
过量的糖皮质激素通过改变基因表达诱导骨骼肌肌病。高龄增强了糖皮质激素介导的肌肉表型,但这些增强表型背后的转录反应尚不清楚。本研究的目的是确定急性和较长时间糖皮质激素治疗后年轻和老年肌肉中糖皮质激素应答转录组。幼龄(4月龄)或老龄(24月龄)雄性小鼠分别给予急性地塞米松(DEX)或对照物注射,或每日地塞米松或对照物注射7天。最后一次或仅一次注射后6.5 h取肌。选择胫骨前肌(TA)进行RNA测序分析,因为DEX治疗降低了老年男性的TA质量。在硅分析鉴定富集的途径和转录因子预测调节dex敏感基因。急性DEX在年轻男性(950)和老年男性(913)中改变了相似的基因数量,尽管老年男性有更大的倍数变化。经过7天的DEX治疗后,与急性暴露相比,老年肌肉表现出更多的deg(1196比913),而年轻肌肉表现出比急性暴露后更少的deg(599比950)。在老年男性中,糖皮质激素敏感基因在两个时间点的生长调节过程中持续富集,这种模式在年轻男性中并不明显。尽管存在与年龄相关的转录差异,但预测调节糖皮质激素敏感基因的转录因子在年轻和老年男性中是相似的。这些数据扩展了我们对衰老如何改变骨骼肌中过量糖皮质激素的转录反应的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiological genomics
Physiological genomics 生物-生理学
CiteScore
6.10
自引率
0.00%
发文量
46
审稿时长
4-8 weeks
期刊介绍: The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信