Evidence-Based Framework for Identifying Opioid Use Disorder in Administrative Data: A Systematic Review and Methodological Development Study.

IF 3 3区 医学 Q1 ANESTHESIOLOGY
Pain Medicine Pub Date : 2025-08-25 DOI:10.1093/pm/pnaf116
Robert W Hurley, Khadijah T Bland, Mira D Chaskes, Daniel Guth, Elaine L Hill, Meredith C B Adams
{"title":"Evidence-Based Framework for Identifying Opioid Use Disorder in Administrative Data: A Systematic Review and Methodological Development Study.","authors":"Robert W Hurley, Khadijah T Bland, Mira D Chaskes, Daniel Guth, Elaine L Hill, Meredith C B Adams","doi":"10.1093/pm/pnaf116","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To systematically evaluate existing approaches for identifying opioid use disorder (OUD) in administrative datasets and develop evidence-based recommendations for standardized identification methods.</p><p><strong>Design: </strong>Systematic review following PRISMA-Scoping Review guidelines with comprehensive literature search and evidence synthesis for framework development.</p><p><strong>Setting: </strong>Administrative datasets including commercial claims, Medicaid, Medicare, and electronic health records.</p><p><strong>Subjects: </strong>169 studies using administrative codes to identify OUD, primarily from U.S. healthcare systems (94.7%).</p><p><strong>Methods: </strong>Systematic search of EMBASE, MEDLINE, Google Scholar, and PubMed through February 2024. Three independent reviewers screened articles and extracted data using standardized tools. Study quality was assessed using modified Newcastle-Ottawa Scale. Framework development employed systematic integration of evidence-based components from high-quality studies.</p><p><strong>Results: </strong>Our analysis of 169 studies revealed four distinct identification approaches: Direct diagnosis codes (36.7%), composite definitions (48.0%), overdose codes (10.1%), and medication-assisted treatment codes (1.2%). Commercial claims data predominated (60.4%), followed by Medicaid claims (10.1%) and electronic health records (7.7%). Multi-modal strategies incorporating both diagnostic and treatment codes showing superior theoretical foundation compared to single-method approaches. Substantial variation existed in reference periods, code requirements, and treatment verification approaches.</p><p><strong>Conclusions: </strong>An evidence-based framework incorporating diagnosis codes, specific temporal requirements, validated indirect indicators, and treatment evidence provides theoretical foundation for standardized OUD identification protocols. The framework addresses known sources of misclassification while maintaining diagnostic specificity through clinical diagnostic alignment and systematic validation research programs.</p>","PeriodicalId":19744,"journal":{"name":"Pain Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pain Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/pm/pnaf116","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To systematically evaluate existing approaches for identifying opioid use disorder (OUD) in administrative datasets and develop evidence-based recommendations for standardized identification methods.

Design: Systematic review following PRISMA-Scoping Review guidelines with comprehensive literature search and evidence synthesis for framework development.

Setting: Administrative datasets including commercial claims, Medicaid, Medicare, and electronic health records.

Subjects: 169 studies using administrative codes to identify OUD, primarily from U.S. healthcare systems (94.7%).

Methods: Systematic search of EMBASE, MEDLINE, Google Scholar, and PubMed through February 2024. Three independent reviewers screened articles and extracted data using standardized tools. Study quality was assessed using modified Newcastle-Ottawa Scale. Framework development employed systematic integration of evidence-based components from high-quality studies.

Results: Our analysis of 169 studies revealed four distinct identification approaches: Direct diagnosis codes (36.7%), composite definitions (48.0%), overdose codes (10.1%), and medication-assisted treatment codes (1.2%). Commercial claims data predominated (60.4%), followed by Medicaid claims (10.1%) and electronic health records (7.7%). Multi-modal strategies incorporating both diagnostic and treatment codes showing superior theoretical foundation compared to single-method approaches. Substantial variation existed in reference periods, code requirements, and treatment verification approaches.

Conclusions: An evidence-based framework incorporating diagnosis codes, specific temporal requirements, validated indirect indicators, and treatment evidence provides theoretical foundation for standardized OUD identification protocols. The framework addresses known sources of misclassification while maintaining diagnostic specificity through clinical diagnostic alignment and systematic validation research programs.

在行政数据中识别阿片类药物使用障碍的循证框架:系统回顾和方法发展研究。
目的:系统评估管理数据集中识别阿片类药物使用障碍(OUD)的现有方法,并为标准化识别方法提出循证建议。设计:系统回顾,遵循PRISMA-Scoping review指南,综合文献检索和证据综合,以制定框架。设置:管理数据集,包括商业索赔、医疗补助、医疗保险和电子健康记录。研究对象:使用行政代码识别OUD的169项研究,主要来自美国医疗保健系统(94.7%)。方法:系统检索EMBASE、MEDLINE、谷歌Scholar和PubMed,检索截止日期为2024年2月。三位独立审稿人筛选文章并使用标准化工具提取数据。采用改良的纽卡斯尔-渥太华量表评估研究质量。框架开发采用系统整合来自高质量研究的循证成分。结果:我们对169项研究的分析揭示了四种不同的识别方法:直接诊断代码(36.7%)、复合定义代码(48.0%)、过量代码(10.1%)和药物辅助治疗代码(1.2%)。商业索赔数据占主导地位(60.4%),其次是医疗补助索赔(10.1%)和电子健康记录(7.7%)。与单一方法相比,结合诊断和治疗代码的多模式策略显示出优越的理论基础。在参考期、代码需求和处理验证方法中存在大量的变化。结论:一个包含诊断代码、特定时间要求、经过验证的间接指标和治疗证据的循证框架为标准化OUD识别方案提供了理论基础。该框架解决了已知的错误分类来源,同时通过临床诊断校准和系统验证研究计划保持诊断特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pain Medicine
Pain Medicine 医学-医学:内科
CiteScore
6.50
自引率
3.20%
发文量
187
审稿时长
3 months
期刊介绍: Pain Medicine is a multi-disciplinary journal dedicated to pain clinicians, educators and researchers with an interest in pain from various medical specialties such as pain medicine, anaesthesiology, family practice, internal medicine, neurology, neurological surgery, orthopaedic spine surgery, psychiatry, and rehabilitation medicine as well as related health disciplines such as psychology, neuroscience, nursing, nurse practitioner, physical therapy, and integrative health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信