Daniel Camacho-Gomez, Raffaele Sentiero, Maurizio Ventre, Jose Manuel Garcia-Aznar
{"title":"Leveraging agent-based models and deep reinforcement learning to predict taxis in cell migration.","authors":"Daniel Camacho-Gomez, Raffaele Sentiero, Maurizio Ventre, Jose Manuel Garcia-Aznar","doi":"10.1038/s41540-025-00576-0","DOIUrl":null,"url":null,"abstract":"<p><p>We present a novel computational framework that combines Agent-Based Modeling (ABM) with Reinforcement Learning (RL) using the Double Deep Q-Network (DDQN) algorithm to determine cellular behavior in response to environmental signals. With this approach, the model captures the transduction of environmental cues into biological responses directly from experimental observations, without explicitly predefining cell behavior. This enables the prediction of dynamic, environment-dependent cell behavior and offers a scalable and flexible alternative to traditional rule-based ABM. To illustrate its potential, we present an application to barotactic cell migration data from microfluidic device experiments, where cells adapt their migration behavior based on pressure gradients, demonstrating the model's ability to generalize across varying geometries and pressure configurations. Thus, this approach introduces a novel direction for modeling how cells sense and transduce environmental cues into biological behaviors.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"99"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12378232/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00576-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a novel computational framework that combines Agent-Based Modeling (ABM) with Reinforcement Learning (RL) using the Double Deep Q-Network (DDQN) algorithm to determine cellular behavior in response to environmental signals. With this approach, the model captures the transduction of environmental cues into biological responses directly from experimental observations, without explicitly predefining cell behavior. This enables the prediction of dynamic, environment-dependent cell behavior and offers a scalable and flexible alternative to traditional rule-based ABM. To illustrate its potential, we present an application to barotactic cell migration data from microfluidic device experiments, where cells adapt their migration behavior based on pressure gradients, demonstrating the model's ability to generalize across varying geometries and pressure configurations. Thus, this approach introduces a novel direction for modeling how cells sense and transduce environmental cues into biological behaviors.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.