Liu Sun,Tim R Eijgenraam,Carl Amilon,David Janzén,Kenny M Hansson,Dieter A Kubli,Daniela Später,Adam E Mullick,Peter van der Meer,Vivian Oliveira Nunes Teixeira,Herman H W Silljé
{"title":"In PLN-R14del mice, SR structure restoration, rather than calcium cycling, is the dominant effector of PLN-ASO treatment.","authors":"Liu Sun,Tim R Eijgenraam,Carl Amilon,David Janzén,Kenny M Hansson,Dieter A Kubli,Daniela Später,Adam E Mullick,Peter van der Meer,Vivian Oliveira Nunes Teixeira,Herman H W Silljé","doi":"10.1093/cvr/cvaf156","DOIUrl":null,"url":null,"abstract":"AIMS\r\nPhospholamban (PLN) acts as an inhibitory regulator of calcium uptake in the sarco-/endoplasmic reticulum (SR) of cardiomyocytes. The pathogenic variant, PLN-R14del, leads to dilated and/or arrhythmogenic cardiomyopathy. Previous studies demonstrated that PLN-targeting antisense oligonucleotides (ASOs) can mitigate disease progression in mice. However, it remains unclear whether the protective effects of PLN-ASO therapy are due to improved calcium homeostasis or via reduction of abnormal PLN-SR clusters, a hallmark of this disease.\r\n\r\nMETHODS AND RESULTS\r\n: Homozygous PLN-R14del (R14Δ/Δ) mice were randomized to injections with various doses of PLN-ASO (3, 7, 15 or 25 mg/kg) or a scrambled control. Consistent with previous findings, R14Δ/Δ mice exhibited severe cardiac dysfunction, myocardial fibrosis, and aberrant SR clusters by 7 weeks of age. ASO-treated R14Δ/Δ mice displayed a dose-dependent preservation of cardiac function with diminished remodeling and extended lifespan. Correspondingly, abnormal PLN-SR clustering was diminished by ASO therapy in a dose-dependent manner, and SR structure returned to a normal state. Calcium dynamics were investigated separately on isolated cardiomyocytes from treated mice. In wild-type (WT) mice, ASO (25 mg/kg) mediated PLN depletion significantly enhanced calcium and contractile dynamics, confirming effective target engagement. In R14Δ/Δ cardiomyocytes, however, ASO treatment showed limited effects on calcium dynamics. Calcium transient decay and sarcomeric shortening were already enhanced in R14Δ/Δ cardiomyocytes compared to WT, suggesting a partial loss of the PLN-R14del calcium inhibitory function. This preexisting acceleration of calcium dynamics likely accounts for the limited impact of ASO therapy on calcium regulation in R14Δ/Δ mice.\r\n\r\nCONCLUSIONS\r\nPLN-ASO treatment demonstrated a dose-dependent restoration of SR organization and a concomitant increase in lifespan in PLN-R14del mice. The enhanced SR calcium uptake in PLN-R14del mice suggests a partial loss of inhibitory function, limiting ASO therapy's effects on calcium dynamics. This implies that PLN-ASO therapy acts predominantly via restoration of SR structure in PLN-R14del cardiomyopathy.","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":"52 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cvr/cvaf156","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
AIMS
Phospholamban (PLN) acts as an inhibitory regulator of calcium uptake in the sarco-/endoplasmic reticulum (SR) of cardiomyocytes. The pathogenic variant, PLN-R14del, leads to dilated and/or arrhythmogenic cardiomyopathy. Previous studies demonstrated that PLN-targeting antisense oligonucleotides (ASOs) can mitigate disease progression in mice. However, it remains unclear whether the protective effects of PLN-ASO therapy are due to improved calcium homeostasis or via reduction of abnormal PLN-SR clusters, a hallmark of this disease.
METHODS AND RESULTS
: Homozygous PLN-R14del (R14Δ/Δ) mice were randomized to injections with various doses of PLN-ASO (3, 7, 15 or 25 mg/kg) or a scrambled control. Consistent with previous findings, R14Δ/Δ mice exhibited severe cardiac dysfunction, myocardial fibrosis, and aberrant SR clusters by 7 weeks of age. ASO-treated R14Δ/Δ mice displayed a dose-dependent preservation of cardiac function with diminished remodeling and extended lifespan. Correspondingly, abnormal PLN-SR clustering was diminished by ASO therapy in a dose-dependent manner, and SR structure returned to a normal state. Calcium dynamics were investigated separately on isolated cardiomyocytes from treated mice. In wild-type (WT) mice, ASO (25 mg/kg) mediated PLN depletion significantly enhanced calcium and contractile dynamics, confirming effective target engagement. In R14Δ/Δ cardiomyocytes, however, ASO treatment showed limited effects on calcium dynamics. Calcium transient decay and sarcomeric shortening were already enhanced in R14Δ/Δ cardiomyocytes compared to WT, suggesting a partial loss of the PLN-R14del calcium inhibitory function. This preexisting acceleration of calcium dynamics likely accounts for the limited impact of ASO therapy on calcium regulation in R14Δ/Δ mice.
CONCLUSIONS
PLN-ASO treatment demonstrated a dose-dependent restoration of SR organization and a concomitant increase in lifespan in PLN-R14del mice. The enhanced SR calcium uptake in PLN-R14del mice suggests a partial loss of inhibitory function, limiting ASO therapy's effects on calcium dynamics. This implies that PLN-ASO therapy acts predominantly via restoration of SR structure in PLN-R14del cardiomyopathy.
期刊介绍:
Cardiovascular Research
Journal Overview:
International journal of the European Society of Cardiology
Focuses on basic and translational research in cardiology and cardiovascular biology
Aims to enhance insight into cardiovascular disease mechanisms and innovation prospects
Submission Criteria:
Welcomes papers covering molecular, sub-cellular, cellular, organ, and organism levels
Accepts clinical proof-of-concept and translational studies
Manuscripts expected to provide significant contribution to cardiovascular biology and diseases