GDF15-Mediated Regulation of Ferroptosis: Unraveling the p62/Keap1/Nrf2 Pathway in Gastric Cancer Development.

IF 3.2 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Lixia Yang, Hong Li, Yun Yang, Liping Dong, Yanqiong Li, Youhua Lv
{"title":"GDF15-Mediated Regulation of Ferroptosis: Unraveling the p62/Keap1/Nrf2 Pathway in Gastric Cancer Development.","authors":"Lixia Yang, Hong Li, Yun Yang, Liping Dong, Yanqiong Li, Youhua Lv","doi":"10.1002/mc.70037","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric cancer (GC) is a highly prevalent and lethal malignancy. This study aims to investigate the role of Growth Differentiation Factor 15 (GDF15) in regulating ferroptosis through the p62/Keap1/Nrf2 pathway and to elucidate its impact on GC progression. GDF15 levels were assessed via Western blot (WB) analysis in both human gastric mucosal cells and GC cell lines. Cellular viability and growth were evaluated using CCK-8 assays and colony formation experiments. Cell migration and invasion capabilities were assessed using wound healing and Transwell assays. Levels of ROS, MDA, GSH, GPX4, and Fe²⁺ in cells were measured using assay kits. JC-1 method was utilized for evaluating mitochondrial membrane potential. Tumor weight changes were recorded in BALB/c nude mouse models. GDF15 was highly expressed in GC cells, and sh-GDF15 inhibited the growth and metastasis of GC cells, increased the expression of ROS and MDA in cells, promoted cell ferroptosis, and inhibited the p62/Keap1/Nrf2 pathway in cells (p < 0.05). Compared to the sh-GDF15 group, treatment with the Nrf2 activator, NK-252 reduced ROS and MDA levels, suppressed ferroptosis, and enhanced the activation of the p62/Keap1/Nrf2 signaling pathway in GC cells. In GC tissues, the sh-GDF15 group showed reduced tumor volume and weight, elevated Keap1, ROS, and MDA expression, decreased p62 and Nrf2 levels, and increased ferroptosis, which were reversed by the addition of NK-252 (p < 0.05). Conclusively, silencing GDF15 inhibits the p62/Keap1/Nrf2 pathway, promoting ferroptosis and suppressing GC progression.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.70037","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gastric cancer (GC) is a highly prevalent and lethal malignancy. This study aims to investigate the role of Growth Differentiation Factor 15 (GDF15) in regulating ferroptosis through the p62/Keap1/Nrf2 pathway and to elucidate its impact on GC progression. GDF15 levels were assessed via Western blot (WB) analysis in both human gastric mucosal cells and GC cell lines. Cellular viability and growth were evaluated using CCK-8 assays and colony formation experiments. Cell migration and invasion capabilities were assessed using wound healing and Transwell assays. Levels of ROS, MDA, GSH, GPX4, and Fe²⁺ in cells were measured using assay kits. JC-1 method was utilized for evaluating mitochondrial membrane potential. Tumor weight changes were recorded in BALB/c nude mouse models. GDF15 was highly expressed in GC cells, and sh-GDF15 inhibited the growth and metastasis of GC cells, increased the expression of ROS and MDA in cells, promoted cell ferroptosis, and inhibited the p62/Keap1/Nrf2 pathway in cells (p < 0.05). Compared to the sh-GDF15 group, treatment with the Nrf2 activator, NK-252 reduced ROS and MDA levels, suppressed ferroptosis, and enhanced the activation of the p62/Keap1/Nrf2 signaling pathway in GC cells. In GC tissues, the sh-GDF15 group showed reduced tumor volume and weight, elevated Keap1, ROS, and MDA expression, decreased p62 and Nrf2 levels, and increased ferroptosis, which were reversed by the addition of NK-252 (p < 0.05). Conclusively, silencing GDF15 inhibits the p62/Keap1/Nrf2 pathway, promoting ferroptosis and suppressing GC progression.

gdf15介导的铁下垂调控:揭示p62/Keap1/Nrf2通路在胃癌发展中的作用。
胃癌(GC)是一种非常普遍和致命的恶性肿瘤。本研究旨在探讨生长分化因子15 (Growth Differentiation Factor 15, GDF15)通过p62/Keap1/Nrf2通路调控铁ptosis的作用,并阐明其对GC进展的影响。通过Western blot (WB)分析人胃粘膜细胞和胃癌细胞株的GDF15水平。采用CCK-8检测和菌落形成实验评估细胞活力和生长情况。采用伤口愈合和Transwell试验评估细胞迁移和侵袭能力。使用检测试剂盒检测细胞中ROS、MDA、GSH、GPX4和Fe 2 +的水平。采用JC-1法测定线粒体膜电位。在BALB/c裸鼠模型中记录肿瘤重量变化。GDF15在GC细胞中高表达,sh-GDF15抑制GC细胞的生长和转移,增加细胞中ROS和MDA的表达,促进细胞铁凋亡,抑制细胞中p62/Keap1/Nrf2通路(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Carcinogenesis
Molecular Carcinogenesis 医学-生化与分子生物学
CiteScore
7.30
自引率
2.20%
发文量
112
审稿时长
2 months
期刊介绍: Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信