A data-driven two-microphone method for in situ sound absorption measurements of porous materialsa).

IF 2.3 2区 物理与天体物理 Q2 ACOUSTICS
Leon Emmerich, Patrik Aste, Eric Brandão, Mélanie Nolan, Jacques Cuenca, U Peter Svensson, Marcus Maeder, Steffen Marburg, Elias Zea
{"title":"A data-driven two-microphone method for in situ sound absorption measurements of porous materialsa).","authors":"Leon Emmerich, Patrik Aste, Eric Brandão, Mélanie Nolan, Jacques Cuenca, U Peter Svensson, Marcus Maeder, Steffen Marburg, Elias Zea","doi":"10.1121/10.0039101","DOIUrl":null,"url":null,"abstract":"<p><p>This work presents a data-driven approach to estimating the sound absorption coefficient of an infinite porous slab using a neural network and a two-microphone measurement on a finite porous sample. A one-dimensional-convolutional network predicts the sound absorption coefficient from the complex-valued transfer function between the sound pressure measured at the two microphone positions. The network is trained and validated with numerical data generated by a boundary element model using the Delany-Bazley-Miki model, demonstrating accurate predictions for various numerical samples. The method is experimentally validated with baffled rectangular samples of a fibrous material, where sample size and source height are varied. The results show that the neural network offers the possibility to reliably predict the in situ sound absorption of a porous material using the two-microphone method as if the sample were infinite. The normal-incidence sound absorption coefficient obtained by the network compares well with that obtained theoretically and in an impedance tube. The proposed method has promising perspectives for estimating the sound absorption coefficient of acoustic materials after installation and in realistic operational conditions.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"158 3","pages":"1711-1722"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0039101","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a data-driven approach to estimating the sound absorption coefficient of an infinite porous slab using a neural network and a two-microphone measurement on a finite porous sample. A one-dimensional-convolutional network predicts the sound absorption coefficient from the complex-valued transfer function between the sound pressure measured at the two microphone positions. The network is trained and validated with numerical data generated by a boundary element model using the Delany-Bazley-Miki model, demonstrating accurate predictions for various numerical samples. The method is experimentally validated with baffled rectangular samples of a fibrous material, where sample size and source height are varied. The results show that the neural network offers the possibility to reliably predict the in situ sound absorption of a porous material using the two-microphone method as if the sample were infinite. The normal-incidence sound absorption coefficient obtained by the network compares well with that obtained theoretically and in an impedance tube. The proposed method has promising perspectives for estimating the sound absorption coefficient of acoustic materials after installation and in realistic operational conditions.

一种用于多孔材料原位吸声测量的数据驱动双传声器方法[j]。
这项工作提出了一种数据驱动的方法来估计无限多孔板的吸声系数,使用神经网络和双麦克风测量有限多孔样品。一维卷积网络从两个传声器位置测量的声压之间的复值传递函数预测吸声系数。该网络通过使用Delany-Bazley-Miki模型的边界元模型生成的数值数据进行训练和验证,证明了对各种数值样本的准确预测。该方法在纤维材料的折板矩形样品上进行了实验验证,其中样品大小和源高度是不同的。结果表明,神经网络提供了可靠地预测多孔材料的原位吸声的可能性,使用双传声器的方法,就像样品是无限的一样。该网络得到的正入射吸声系数与理论和阻抗管中得到的吸声系数比较好。该方法对声学材料安装后和实际使用条件下的吸声系数估计具有很好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信