Sriharsha Mopidevi , Kuk Jin Jang , Basam Alasaly , Sydney Pugh , Jean Park , Ashley Batugo , Sy Hwang , Eric Eaton , Danielle Lee Mowery , Kevin B. Johnson
{"title":"MedVidDeID: Protecting privacy in clinical encounter video recordings","authors":"Sriharsha Mopidevi , Kuk Jin Jang , Basam Alasaly , Sydney Pugh , Jean Park , Ashley Batugo , Sy Hwang , Eric Eaton , Danielle Lee Mowery , Kevin B. Johnson","doi":"10.1016/j.jbi.2025.104901","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective:</h3><div>The increasing use of audio-video (AV) data in healthcare has improved patient care, clinical training, and medical and ethnographic research. However, it has also introduced major challenges in preserving patient-provider privacy due to Protected Health Information (PHI) in such data. Traditional de-identification methods are inadequate for AV data, which can reveal identifiable information such as faces, voices, and environmental details. Our goal was to create a pipeline for de-identifying AV healthcare data that minimized the human effort required to guarantee successful de-identification.</div></div><div><h3>Methods:</h3><div>We combined open-source tools with novel methods and infrastructure into a six-stage pipeline: (1) transcript extraction using WhisperX, (2) transcript de-identification with an adapted PHIlter, (3) audio de-identification through scrubbing, (4) video de-identification using YOLOv11 for pose detection and blurring, (5) recombining de-identified audio and video, and (6) validation and correction via manual quality control (QC). We developed two de-identification strategies to support different tolerances for lossy video images. We evaluated this pipeline using 10 h of simulated clinical AV recordings, comprising nearly 1.1 million video frames and approximately 72,000 words.</div></div><div><h3>Results:</h3><div>In Precision Privacy Preservation (PPP) mode, MedVidDeId achieved a success rate of 50%, while in Greedy Privacy Preservation (GPP) mode, it achieved a 97.5% success rate. Compared to manual methods for a 15 min video segment, the pipeline reduced de-identification time by 26.7% in PPP and 64.2% in GPP modes.</div></div><div><h3>Conclusion:</h3><div>The MedVidDeID pipeline offers a viable, efficient hybrid solution for handling AV healthcare data and privacy preservation. Future work will focus on reducing upstream errors at each stage and minimizing the role of the human in the loop.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"170 ","pages":"Article 104901"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425001303","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective:
The increasing use of audio-video (AV) data in healthcare has improved patient care, clinical training, and medical and ethnographic research. However, it has also introduced major challenges in preserving patient-provider privacy due to Protected Health Information (PHI) in such data. Traditional de-identification methods are inadequate for AV data, which can reveal identifiable information such as faces, voices, and environmental details. Our goal was to create a pipeline for de-identifying AV healthcare data that minimized the human effort required to guarantee successful de-identification.
Methods:
We combined open-source tools with novel methods and infrastructure into a six-stage pipeline: (1) transcript extraction using WhisperX, (2) transcript de-identification with an adapted PHIlter, (3) audio de-identification through scrubbing, (4) video de-identification using YOLOv11 for pose detection and blurring, (5) recombining de-identified audio and video, and (6) validation and correction via manual quality control (QC). We developed two de-identification strategies to support different tolerances for lossy video images. We evaluated this pipeline using 10 h of simulated clinical AV recordings, comprising nearly 1.1 million video frames and approximately 72,000 words.
Results:
In Precision Privacy Preservation (PPP) mode, MedVidDeId achieved a success rate of 50%, while in Greedy Privacy Preservation (GPP) mode, it achieved a 97.5% success rate. Compared to manual methods for a 15 min video segment, the pipeline reduced de-identification time by 26.7% in PPP and 64.2% in GPP modes.
Conclusion:
The MedVidDeID pipeline offers a viable, efficient hybrid solution for handling AV healthcare data and privacy preservation. Future work will focus on reducing upstream errors at each stage and minimizing the role of the human in the loop.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.