Shayan Bahadori, Peter Buckle, Tayana Soukup Ascensao, Saira Ghafur, Patrick Kierkegaard
{"title":"Evolving Digital Health Technologies: Aligning With and Enhancing the National Institute for Health and Care Excellence Evidence Standards Framework.","authors":"Shayan Bahadori, Peter Buckle, Tayana Soukup Ascensao, Saira Ghafur, Patrick Kierkegaard","doi":"10.2196/67435","DOIUrl":null,"url":null,"abstract":"<p><strong>Unlabelled: </strong>The rapid advancement of artificial intelligence (AI)-driven diagnostics and wearable health technologies is transforming health care delivery by enabling real-time health monitoring and early disease detection. These innovations are catalyzing a shift toward personalized medicine, with interventions tailored to individual patient profiles with unprecedented precision. This paper examines the current National Institute for Health and Care Excellence (NICE) evidence standards framework (ESF) for digital health technologies (DHTs) and evaluates the challenges associated with integrating DHTs into existing health and care systems. A comprehensive review of the NICE ESF guidelines was conducted, alongside an evaluation of their applicability to emerging AI and wearable technologies. Key limitations and barriers were identified, with particular focus on the framework's responsiveness to technologies that evolve through machine learning and real-world data integration. Our findings indicate that while the NICE ESF provides a structured approach for evaluating DHTs, it lacks the adaptability required for rapidly evolving innovations. The framework does not sufficiently incorporate real-world evidence or support continuous learning models, which are critical for the safe and effective deployment of AI-based diagnostics and wearables. To remain effective and relevant, the NICE ESF should transition to a dynamic, adaptive model co-designed with industry stakeholders. By embedding real-world evidence-based strategies and promoting transparency, efficiency, and collaborative innovation, the updated framework would better facilitate the integration of AI-driven diagnostics and wearables into health care systems, ultimately enhancing patient outcomes and optimizing health care delivery.</p>","PeriodicalId":14756,"journal":{"name":"JMIR mHealth and uHealth","volume":"13 ","pages":"e67435"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373408/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR mHealth and uHealth","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/67435","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Unlabelled: The rapid advancement of artificial intelligence (AI)-driven diagnostics and wearable health technologies is transforming health care delivery by enabling real-time health monitoring and early disease detection. These innovations are catalyzing a shift toward personalized medicine, with interventions tailored to individual patient profiles with unprecedented precision. This paper examines the current National Institute for Health and Care Excellence (NICE) evidence standards framework (ESF) for digital health technologies (DHTs) and evaluates the challenges associated with integrating DHTs into existing health and care systems. A comprehensive review of the NICE ESF guidelines was conducted, alongside an evaluation of their applicability to emerging AI and wearable technologies. Key limitations and barriers were identified, with particular focus on the framework's responsiveness to technologies that evolve through machine learning and real-world data integration. Our findings indicate that while the NICE ESF provides a structured approach for evaluating DHTs, it lacks the adaptability required for rapidly evolving innovations. The framework does not sufficiently incorporate real-world evidence or support continuous learning models, which are critical for the safe and effective deployment of AI-based diagnostics and wearables. To remain effective and relevant, the NICE ESF should transition to a dynamic, adaptive model co-designed with industry stakeholders. By embedding real-world evidence-based strategies and promoting transparency, efficiency, and collaborative innovation, the updated framework would better facilitate the integration of AI-driven diagnostics and wearables into health care systems, ultimately enhancing patient outcomes and optimizing health care delivery.
期刊介绍:
JMIR mHealth and uHealth (JMU, ISSN 2291-5222) is a spin-off journal of JMIR, the leading eHealth journal (Impact Factor 2016: 5.175). JMIR mHealth and uHealth is indexed in PubMed, PubMed Central, and Science Citation Index Expanded (SCIE), and in June 2017 received a stunning inaugural Impact Factor of 4.636.
The journal focusses on health and biomedical applications in mobile and tablet computing, pervasive and ubiquitous computing, wearable computing and domotics.
JMIR mHealth and uHealth publishes since 2013 and was the first mhealth journal in Pubmed. It publishes even faster and has a broader scope with including papers which are more technical or more formative/developmental than what would be published in the Journal of Medical Internet Research.