Advancements in Parkinson's Disease Prediction Using Machine Learning: A Neurological Perspective.

IF 2.1 Q3 MEDICAL INFORMATICS
Healthcare Informatics Research Pub Date : 2025-07-01 Epub Date: 2025-07-31 DOI:10.4258/hir.2025.31.3.274
Aravalli Sainath Chaithanya, Nadipudi Kiran Kumar, Gugulothu Venkatesh Prasad, Bejawada Keerthana
{"title":"Advancements in Parkinson's Disease Prediction Using Machine Learning: A Neurological Perspective.","authors":"Aravalli Sainath Chaithanya, Nadipudi Kiran Kumar, Gugulothu Venkatesh Prasad, Bejawada Keerthana","doi":"10.4258/hir.2025.31.3.274","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aims to predict the severity of Parkinson's disease (PD) by leveraging a comprehensive dataset integrating cerebrospinal fluid protein and peptide data sourced from UniProt, normalized protein expression metrics, clinical assessments, and gait data. The dataset comprised 248 PD patients monitored longitudinally, with periodic evaluations including 227 proteins, 971 peptides, gait parameters, and Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scores at baseline 0, 6, 12, and 24 months.</p><p><strong>Methods: </strong>A multifaceted machine learning framework was employed, consisting of random forest, TensorFlow decision forests, and a custom-developed phaseshift ensembling model. Additionally, regression techniques such as linear regression, random forest regressor, decision tree regressor, and K-nearest neighbors were utilized to support the predictions. These models aimed to forecast PD severity as reflected by UPDRS scores.</p><p><strong>Results: </strong>The custom phase-shift ensembling model demonstrated superior predictive performance, achieving an average symmetric mean absolute percentage error (sMAPE) of 55 across all UPDRS sections. Notably, the random forest regressor excelled in predicting motor function severity (UPDRS-III), attaining an sMAPE of 77.32, indicating its ability to model complex disease progression dynamics effectively.</p><p><strong>Conclusions: </strong>Integrating biological markers, clinical scores, and gait dynamics facilitates accurate modeling of PD progression. The ensemble-based approach, particularly phase-shift ensembling, improves prediction robustness and interpretability, offering a powerful strategy for the early prediction of PD severity. This study highlights the value of multi-source data fusion and advanced machine learning techniques in supporting early diagnosis and informed treatment planning for neurodegenerative diseases.</p>","PeriodicalId":12947,"journal":{"name":"Healthcare Informatics Research","volume":"31 3","pages":"274-283"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12370421/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4258/hir.2025.31.3.274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: This study aims to predict the severity of Parkinson's disease (PD) by leveraging a comprehensive dataset integrating cerebrospinal fluid protein and peptide data sourced from UniProt, normalized protein expression metrics, clinical assessments, and gait data. The dataset comprised 248 PD patients monitored longitudinally, with periodic evaluations including 227 proteins, 971 peptides, gait parameters, and Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scores at baseline 0, 6, 12, and 24 months.

Methods: A multifaceted machine learning framework was employed, consisting of random forest, TensorFlow decision forests, and a custom-developed phaseshift ensembling model. Additionally, regression techniques such as linear regression, random forest regressor, decision tree regressor, and K-nearest neighbors were utilized to support the predictions. These models aimed to forecast PD severity as reflected by UPDRS scores.

Results: The custom phase-shift ensembling model demonstrated superior predictive performance, achieving an average symmetric mean absolute percentage error (sMAPE) of 55 across all UPDRS sections. Notably, the random forest regressor excelled in predicting motor function severity (UPDRS-III), attaining an sMAPE of 77.32, indicating its ability to model complex disease progression dynamics effectively.

Conclusions: Integrating biological markers, clinical scores, and gait dynamics facilitates accurate modeling of PD progression. The ensemble-based approach, particularly phase-shift ensembling, improves prediction robustness and interpretability, offering a powerful strategy for the early prediction of PD severity. This study highlights the value of multi-source data fusion and advanced machine learning techniques in supporting early diagnosis and informed treatment planning for neurodegenerative diseases.

Abstract Image

Abstract Image

Abstract Image

用机器学习预测帕金森病的进展:神经学的视角。
目的:本研究旨在通过综合来自UniProt的脑脊液蛋白和肽数据、标准化蛋白表达指标、临床评估和步态数据的综合数据集来预测帕金森病(PD)的严重程度。该数据集包括248名PD患者的纵向监测,定期评估包括227种蛋白质、971种肽、步态参数和运动障碍协会赞助的统一帕金森病评定量表(MDS-UPDRS)评分,基线为0、6、12和24个月。方法:采用多层面的机器学习框架,包括随机森林、TensorFlow决策森林和定制开发的移相集成模型。此外,还利用线性回归、随机森林回归、决策树回归和k近邻回归等回归技术来支持预测。这些模型旨在通过UPDRS评分来预测PD的严重程度。结果:自定义相移集成模型显示出优越的预测性能,在所有UPDRS部分中实现了平均对称平均绝对百分比误差(sMAPE)为55。值得注意的是,随机森林回归器在预测运动功能严重程度(UPDRS-III)方面表现出色,达到77.32的sMAPE,表明其能够有效地模拟复杂的疾病进展动态。结论:整合生物标志物、临床评分和步态动力学有助于PD进展的准确建模。基于集成的方法,特别是相移集成,提高了预测的鲁棒性和可解释性,为PD严重程度的早期预测提供了强有力的策略。本研究强调了多源数据融合和先进的机器学习技术在支持神经退行性疾病的早期诊断和知情治疗计划方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare Informatics Research
Healthcare Informatics Research MEDICAL INFORMATICS-
CiteScore
4.90
自引率
6.90%
发文量
44
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信