Comparing linear and nonlinear finite element models of vertebral strength across the thoracolumbar spine: a benchmark from density-calibrated computed tomography.
{"title":"Comparing linear and nonlinear finite element models of vertebral strength across the thoracolumbar spine: a benchmark from density-calibrated computed tomography.","authors":"Matthias Walle, Bryn E Matheson, Steven K Boyd","doi":"10.1093/gigascience/giaf094","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Opportunistic assessment of vertebral strength from clinical computed tomography (CT) scans holds substantial promise for fracture risk stratification, yet variability in calibration methods and finite element (FE) modeling approaches has led to limited comparability across studies. In this work, we provide a publicly available benchmark dataset that supports standardized biomechanical analysis of the thoracic and lumbar spine using density-calibrated CT data. We extended the VerSe 2019 dataset to include phantomless quantitative CT calibration, automated vertebral substructure segmentation, and vertebral strength estimates derived from both linear and nonlinear FE models. The cohort comprises 141 patients scanned across 5 CT systems, including contrast-enhanced protocols.</p><p><strong>Results: </strong>Phantomless calibration was performed using automatically segmented tissue references and validated against synchronous calibration phantoms in 17 scans. To evaluate model performance, we implemented a nonlinear elastoplastic FE model and compared it to 2 linear estimates. A displacement-calibrated linear model (0.2% axial strain) demonstrated excellent agreement with nonlinear failure loads (R = 0.96; mean difference = -0.07 kN), while a stiffness-based approach showed similarly strong correlation (R = 0.92). We evaluated vertebral strength at all thoracic and lumbar levels, enabling level-wise normalization and comparison. Strength ratios revealed consistent anatomical trends and identified T12 and T9 as reliable alternatives to L1 for opportunistic screening and model standardization.</p><p><strong>Conclusions: </strong>All calibrated scans, segmentations, software, and modeling outputs are publicly released, providing a benchmark resource for validation and development of FE models, radiomics tools, and other quantitative imaging applications in musculoskeletal research.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12395960/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giaf094","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Opportunistic assessment of vertebral strength from clinical computed tomography (CT) scans holds substantial promise for fracture risk stratification, yet variability in calibration methods and finite element (FE) modeling approaches has led to limited comparability across studies. In this work, we provide a publicly available benchmark dataset that supports standardized biomechanical analysis of the thoracic and lumbar spine using density-calibrated CT data. We extended the VerSe 2019 dataset to include phantomless quantitative CT calibration, automated vertebral substructure segmentation, and vertebral strength estimates derived from both linear and nonlinear FE models. The cohort comprises 141 patients scanned across 5 CT systems, including contrast-enhanced protocols.
Results: Phantomless calibration was performed using automatically segmented tissue references and validated against synchronous calibration phantoms in 17 scans. To evaluate model performance, we implemented a nonlinear elastoplastic FE model and compared it to 2 linear estimates. A displacement-calibrated linear model (0.2% axial strain) demonstrated excellent agreement with nonlinear failure loads (R = 0.96; mean difference = -0.07 kN), while a stiffness-based approach showed similarly strong correlation (R = 0.92). We evaluated vertebral strength at all thoracic and lumbar levels, enabling level-wise normalization and comparison. Strength ratios revealed consistent anatomical trends and identified T12 and T9 as reliable alternatives to L1 for opportunistic screening and model standardization.
Conclusions: All calibrated scans, segmentations, software, and modeling outputs are publicly released, providing a benchmark resource for validation and development of FE models, radiomics tools, and other quantitative imaging applications in musculoskeletal research.
期刊介绍:
GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.