Early 24-Hour Changes in Systemic Immune-Inflammation Index Predict Acute Kidney Injury and Mortality in ICU Patients.

IF 0.8 4区 医学 Q3 EMERGENCY MEDICINE
Emergency Medicine International Pub Date : 2025-08-19 eCollection Date: 2025-01-01 DOI:10.1155/emmi/4949299
Fei Gao, Lan Yang, Yizhe Chen, Hongyang Xu, Ting Yang
{"title":"Early 24-Hour Changes in Systemic Immune-Inflammation Index Predict Acute Kidney Injury and Mortality in ICU Patients.","authors":"Fei Gao, Lan Yang, Yizhe Chen, Hongyang Xu, Ting Yang","doi":"10.1155/emmi/4949299","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> To determine whether early dynamic changes in the systemic immune-inflammation index (SII) improve prediction of acute kidney injury (AKI) and 1-year mortality in critically ill patients. <b>Methods:</b> In this retrospective cohort study of 17,491 ICU admissions from the MIMIC-IV database, we calculated three SII metrics within the first 24 h of ICU stay: the 24-h SII_slope and the extreme values (SII_min, SII_max). LASSO-selected multivariable logistic regression was used to predict AKI, and Cox proportional hazards models assessed associations with 1-year mortality. A prognostic nomogram integrating SOFA score, APS III score, and log-transformed SII_min and SII_max was developed using the rms package in R. Model performance was evaluated by AUC of ROC curves, calibration plots, decision curve analysis (DCA), and Kaplan-Meier survival curves stratified by SII quartiles. <b>Results:</b> The LASSO-based logistic model identified a steeper 24-h SII_slope as an independent predictor of AKI (AUC 0.739; patients who developed AKI had significantly higher predicted risk than those who did not). Higher SII_min and SII_max were each associated with reduced 1-year survival (log-rank <i>p</i>=0.047 for SII_min quartiles). The nomogram for 1-year mortality demonstrated excellent discrimination (AUC 0.823) and good calibration, and DCA confirmed its clinical utility. <b>Conclusions:</b> Early dynamic changes in SII-especially the 24-h slope-and the first-day SII extremes independently predict AKI and long-term mortality in ICU patients. A nomogram combining SII metrics with standard severity scores may facilitate individualized risk stratification in critical care.</p>","PeriodicalId":11528,"journal":{"name":"Emergency Medicine International","volume":"2025 ","pages":"4949299"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380515/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emergency Medicine International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/emmi/4949299","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"EMERGENCY MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: To determine whether early dynamic changes in the systemic immune-inflammation index (SII) improve prediction of acute kidney injury (AKI) and 1-year mortality in critically ill patients. Methods: In this retrospective cohort study of 17,491 ICU admissions from the MIMIC-IV database, we calculated three SII metrics within the first 24 h of ICU stay: the 24-h SII_slope and the extreme values (SII_min, SII_max). LASSO-selected multivariable logistic regression was used to predict AKI, and Cox proportional hazards models assessed associations with 1-year mortality. A prognostic nomogram integrating SOFA score, APS III score, and log-transformed SII_min and SII_max was developed using the rms package in R. Model performance was evaluated by AUC of ROC curves, calibration plots, decision curve analysis (DCA), and Kaplan-Meier survival curves stratified by SII quartiles. Results: The LASSO-based logistic model identified a steeper 24-h SII_slope as an independent predictor of AKI (AUC 0.739; patients who developed AKI had significantly higher predicted risk than those who did not). Higher SII_min and SII_max were each associated with reduced 1-year survival (log-rank p=0.047 for SII_min quartiles). The nomogram for 1-year mortality demonstrated excellent discrimination (AUC 0.823) and good calibration, and DCA confirmed its clinical utility. Conclusions: Early dynamic changes in SII-especially the 24-h slope-and the first-day SII extremes independently predict AKI and long-term mortality in ICU patients. A nomogram combining SII metrics with standard severity scores may facilitate individualized risk stratification in critical care.

Abstract Image

Abstract Image

Abstract Image

24小时前全身免疫炎症指数变化预测ICU患者急性肾损伤和死亡率。
背景:探讨系统性免疫炎症指数(SII)的早期动态变化是否能改善危重患者急性肾损伤(AKI)和1年死亡率的预测。方法:在这项来自MIMIC-IV数据库的17,491例ICU入院患者的回顾性队列研究中,我们计算了ICU前24小时内的三个SII指标:24小时SII_slope和极值(SII_min, SII_max)。使用lasso选择的多变量逻辑回归预测AKI,并使用Cox比例风险模型评估与1年死亡率的关联。利用r中的rms软件包,将SOFA评分、APS III评分、经对数变换的SII_min和SII_max整合成预后nomogram。通过ROC曲线、校正图、决策曲线分析(DCA)和SII四分位数分层的Kaplan-Meier生存曲线的AUC来评价模型的性能。结果:基于lasso的logistic模型确定了更陡的24小时sii斜率作为AKI的独立预测因子(AUC 0.739;发生AKI的患者的预测风险显著高于未发生AKI的患者)。SII_min和SII_max越高,1年生存率越低(SII_min四分位数的log-rank p=0.047)。1年死亡率的nomogram具有很好的鉴别性(AUC 0.823)和良好的校准性,DCA证实了其临床应用价值。结论:SII的早期动态变化(尤其是24小时斜率)和第一天SII极值可独立预测ICU患者的AKI和长期死亡率。将SII指标与标准严重程度评分相结合的nomogram (nomogram)可以促进重症监护患者的个体化风险分层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Emergency Medicine International
Emergency Medicine International EMERGENCY MEDICINE-
CiteScore
0.10
自引率
0.00%
发文量
187
审稿时长
17 weeks
期刊介绍: Emergency Medicine International is a peer-reviewed, Open Access journal that provides a forum for doctors, nurses, paramedics and ambulance staff. The journal publishes original research articles, review articles, and clinical studies related to prehospital care, disaster preparedness and response, acute medical and paediatric emergencies, critical care, sports medicine, wound care, and toxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信