Zhen Hou, Stanley Fronik, Yao Shen, Long Chen, Christopher Thompson, Sarah Neumann, Peijun Zhang
{"title":"Direct visualization of HIV-1 core nuclear import and its interplay with the nuclear pore.","authors":"Zhen Hou, Stanley Fronik, Yao Shen, Long Chen, Christopher Thompson, Sarah Neumann, Peijun Zhang","doi":"10.1038/s44319-025-00567-6","DOIUrl":null,"url":null,"abstract":"<p><p>Direct visualization of HIV-1 nuclear import through the nuclear pore complex (NPC) presents a technical challenge due to the rarity of this process. To enable systematic investigation, we developed a robust in situ system that mimics HIV-1 nuclear import in a near-native context using isolated HIV-1 virus like particles (VLP) cores and permeabilized CD4 + T lymphocyte (CEM) cells. This approach supports docking and translocation of abundant viral cores through nuclear pores into the nucleus. For high-resolution visualization, we implemented an integrated correlative approach to guide cryo-focused ion beam (cryo-FIB) milling and cryo-electron tomography (cryo-ET) imaging, enabling precise targeting and structural characterization of individual nuclear import events. Using this workflow, we visualized 510 HIV-1 VLP cores at distinct stages of nuclear import, capturing key snapshots of the full progression of nuclear import. Subsequent statistical and structural analyses allow classification of core morphologies and identification of translocation-associated remodeling in nuclear pores. This work provides a methodological foundation for dissecting HIV-1 and potentially other viruses nuclear import processes and post-entry events in a controlled and quantitative manner.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00567-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Direct visualization of HIV-1 nuclear import through the nuclear pore complex (NPC) presents a technical challenge due to the rarity of this process. To enable systematic investigation, we developed a robust in situ system that mimics HIV-1 nuclear import in a near-native context using isolated HIV-1 virus like particles (VLP) cores and permeabilized CD4 + T lymphocyte (CEM) cells. This approach supports docking and translocation of abundant viral cores through nuclear pores into the nucleus. For high-resolution visualization, we implemented an integrated correlative approach to guide cryo-focused ion beam (cryo-FIB) milling and cryo-electron tomography (cryo-ET) imaging, enabling precise targeting and structural characterization of individual nuclear import events. Using this workflow, we visualized 510 HIV-1 VLP cores at distinct stages of nuclear import, capturing key snapshots of the full progression of nuclear import. Subsequent statistical and structural analyses allow classification of core morphologies and identification of translocation-associated remodeling in nuclear pores. This work provides a methodological foundation for dissecting HIV-1 and potentially other viruses nuclear import processes and post-entry events in a controlled and quantitative manner.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.