{"title":"Insights into CYP450 polymorphisms and their impact on drug metabolism in Alzheimer's disease therapy.","authors":"Jingjing Zheng, Guoqing Liu, Qi Wang, Yong Liang","doi":"10.1080/03602532.2025.2552786","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a complex neurodegenerative disorder that poses significant therapeutic challenges. Currently available treatments offer symptomatic relief but often yield suboptimal outcomes due to inter-individual variability in drug metabolism. Cytochrome P450 (CYP450) enzymes, particularly those exhibiting genetic polymorphisms, play a central role in the hepatic metabolism of many AD medications. This review focuses on the influence of CYP450 polymorphisms-specifically in CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4-on the pharmacokinetics, efficacy, and safety of approved anti-AD drugs. We discuss how variability in CYP450 expression and activity affects drug response, and examine the implications for adverse drug reactions, therapeutic failure, and dosage optimization. In addition, we evaluate current evidence for CYP450-mediated interactions with traditional Chinese medicines, which are increasingly used in complementary AD therapy. The potential for CYP450 genotyping and phenotyping to guide personalized treatment strategies is critically assessed. We argue that integrating pharmacogenomics into clinical practice may enhance therapeutic precision, reduce adverse outcomes, and improve quality of life in patients with AD. This review provides updated insight into the clinical significance of CYP450 polymorphisms in AD therapy and outlines future directions for personalized medicine approaches.</p>","PeriodicalId":11307,"journal":{"name":"Drug Metabolism Reviews","volume":" ","pages":"1-12"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03602532.2025.2552786","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that poses significant therapeutic challenges. Currently available treatments offer symptomatic relief but often yield suboptimal outcomes due to inter-individual variability in drug metabolism. Cytochrome P450 (CYP450) enzymes, particularly those exhibiting genetic polymorphisms, play a central role in the hepatic metabolism of many AD medications. This review focuses on the influence of CYP450 polymorphisms-specifically in CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4-on the pharmacokinetics, efficacy, and safety of approved anti-AD drugs. We discuss how variability in CYP450 expression and activity affects drug response, and examine the implications for adverse drug reactions, therapeutic failure, and dosage optimization. In addition, we evaluate current evidence for CYP450-mediated interactions with traditional Chinese medicines, which are increasingly used in complementary AD therapy. The potential for CYP450 genotyping and phenotyping to guide personalized treatment strategies is critically assessed. We argue that integrating pharmacogenomics into clinical practice may enhance therapeutic precision, reduce adverse outcomes, and improve quality of life in patients with AD. This review provides updated insight into the clinical significance of CYP450 polymorphisms in AD therapy and outlines future directions for personalized medicine approaches.
期刊介绍:
Drug Metabolism Reviews consistently provides critically needed reviews of an impressive array of drug metabolism research-covering established, new, and potential drugs; environmentally toxic chemicals; absorption; metabolism and excretion; and enzymology of all living species. Additionally, the journal offers new hypotheses of interest to diverse groups of medical professionals including pharmacologists, toxicologists, chemists, microbiologists, pharmacokineticists, immunologists, mass spectroscopists, as well as enzymologists working in xenobiotic biotransformation.