Integrated in vitro, microarray, and network pharmacology analysis reveals the multi-target anti-diabetic potential of Vigna unguiculata.

IF 2.5 Q3 PHARMACOLOGY & PHARMACY
Drug Target Insights Pub Date : 2025-08-21 eCollection Date: 2025-01-01 DOI:10.33393/dti.2025.3495
Haseeba Sardar, Fatima Noor, Syed Muhammad Mukarram Shah, Ashraf Ullah Khan, Jamelah S Al-Otaibi, Fazal Hadi, Maria Daglia, Haroon Khan
{"title":"Integrated <i>in vitro</i>, microarray, and network pharmacology analysis reveals the multi-target anti-diabetic potential of <i>Vigna unguiculata</i>.","authors":"Haseeba Sardar, Fatima Noor, Syed Muhammad Mukarram Shah, Ashraf Ullah Khan, Jamelah S Al-Otaibi, Fazal Hadi, Maria Daglia, Haroon Khan","doi":"10.33393/dti.2025.3495","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Diabetes mellitus (DM), particularly type 2 DM (T2DM), is a chronic metabolic disorder requiring novel therapeutic approaches as the available therapies are not meeting the current challenges. This study investigates the anti-diabetic potential of Vigna unguiculata using a network pharmacology approach, supported by <i>in vitro</i> and <i>in silico</i> analyses.</p><p><strong>Methods: </strong>The plant was collected from Khyber Pakhtunkhwa, Pakistan, and subjected to hydroalcoholic extraction and fractionation. <i>In vitro</i> assays included α-amylase, α-glucosidase, and aldose reductase. Target prediction using STITCH and SwissTargetPrediction identified 88 common genes linked to T2DM. Protein-protein interaction (PPI) network analysis highlighted key genes like EGFR, PTGS2, and TLR4 as central nodes in diabetes-related pathways. Molecular docking was used to study the binding affinities of compounds.</p><p><strong>Results: </strong>IC50 values were determined using IBM SPSS Statistics 21 software. The data underwent analysis using one-way ANOVA followed by Dunnett's multiple comparison test. Significance value was determined at *p   0.05, **p   0.01 and ***p   0.001. In-vitro assays demonstrated significant α-amylase, α-glucosidase, and aldose reductase inhibitory activities. Phytochemical screening identified several bioactive compounds. Functional annotation and KEGG pathway analysis confirmed these genes' roles in crucial metabolic pathways. Virtual screening revealed strong binding affinities of compounds like Stigmasterol, Luteoline, and Quercetin with GSK3B, PTGS2, and TLR4. The Molecular Dynamics (MD) simulation, binding free energy calculations (MM-PBSA and MM-GBSA), confirmed the results of Virtual screening.</p><p><strong>Conclusion: </strong>In short, these findings underscore <i>V. unguiculata</i> as a promising source for anti-diabetic agents, supporting further clinical trials for T2DM management.</p>","PeriodicalId":11326,"journal":{"name":"Drug Target Insights","volume":"19 ","pages":"71-90"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12371541/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Target Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33393/dti.2025.3495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Diabetes mellitus (DM), particularly type 2 DM (T2DM), is a chronic metabolic disorder requiring novel therapeutic approaches as the available therapies are not meeting the current challenges. This study investigates the anti-diabetic potential of Vigna unguiculata using a network pharmacology approach, supported by in vitro and in silico analyses.

Methods: The plant was collected from Khyber Pakhtunkhwa, Pakistan, and subjected to hydroalcoholic extraction and fractionation. In vitro assays included α-amylase, α-glucosidase, and aldose reductase. Target prediction using STITCH and SwissTargetPrediction identified 88 common genes linked to T2DM. Protein-protein interaction (PPI) network analysis highlighted key genes like EGFR, PTGS2, and TLR4 as central nodes in diabetes-related pathways. Molecular docking was used to study the binding affinities of compounds.

Results: IC50 values were determined using IBM SPSS Statistics 21 software. The data underwent analysis using one-way ANOVA followed by Dunnett's multiple comparison test. Significance value was determined at *p   0.05, **p   0.01 and ***p   0.001. In-vitro assays demonstrated significant α-amylase, α-glucosidase, and aldose reductase inhibitory activities. Phytochemical screening identified several bioactive compounds. Functional annotation and KEGG pathway analysis confirmed these genes' roles in crucial metabolic pathways. Virtual screening revealed strong binding affinities of compounds like Stigmasterol, Luteoline, and Quercetin with GSK3B, PTGS2, and TLR4. The Molecular Dynamics (MD) simulation, binding free energy calculations (MM-PBSA and MM-GBSA), confirmed the results of Virtual screening.

Conclusion: In short, these findings underscore V. unguiculata as a promising source for anti-diabetic agents, supporting further clinical trials for T2DM management.

综合体外、微阵列和网络药理学分析揭示了马蹄莲的多靶点抗糖尿病潜力。
导论:糖尿病(DM),特别是2型糖尿病(T2DM)是一种慢性代谢性疾病,由于现有的治疗方法不能满足当前的挑战,需要新的治疗方法。本研究利用网络药理学方法,在体外和计算机分析的支持下,研究了蜈蚣草的抗糖尿病潜力。方法:采自巴基斯坦开伯尔-普赫图赫瓦省,采用水醇提取和分馏方法。体外检测包括α-淀粉酶、α-葡萄糖苷酶和醛糖还原酶。使用STITCH和SwissTargetPrediction进行目标预测,确定了88个与T2DM相关的常见基因。蛋白-蛋白相互作用(PPI)网络分析强调了EGFR、PTGS2和TLR4等关键基因是糖尿病相关通路的中心节点。分子对接用于研究化合物的结合亲和力。结果:采用IBM SPSS Statistics 21软件测定IC50值。数据分析采用单因素方差分析和Dunnett多重比较检验。显著性值分别为*p 0.05、**p 0.01和***p 0.001。体外实验表明其具有显著的α-淀粉酶、α-葡萄糖苷酶和醛糖还原酶抑制活性。植物化学筛选鉴定了几种生物活性化合物。功能注释和KEGG通路分析证实了这些基因在关键代谢途径中的作用。虚拟筛选显示,豆甾醇、木草碱和槲皮素等化合物与GSK3B、PTGS2和TLR4具有较强的结合亲和力。分子动力学(MD)模拟、结合自由能(MM-PBSA和MM-GBSA)计算证实了虚拟筛选的结果。结论:简而言之,这些发现强调了弓形虫作为抗糖尿病药物的一个有希望的来源,支持进一步的T2DM治疗临床试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Target Insights
Drug Target Insights PHARMACOLOGY & PHARMACY-
CiteScore
2.70
自引率
0.00%
发文量
5
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信