Breaking coexistence: Zealotry vs nonlinear social impact.

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-08-01 DOI:10.1063/5.0282676
Christopher R Kitching, Lucía S Ramirez, Maxi San Miguel, Tobias Galla
{"title":"Breaking coexistence: Zealotry vs nonlinear social impact.","authors":"Christopher R Kitching, Lucía S Ramirez, Maxi San Miguel, Tobias Galla","doi":"10.1063/5.0282676","DOIUrl":null,"url":null,"abstract":"<p><p>We study how zealotry and nonlinear social impact affect consensus formation in the nonlinear voter model, evolutionary games, and the partisan voter model. In all three models, consensus is an absorbing state in finite populations, while coexistence is a possible outcome of the deterministic dynamics. We show that sufficiently strong zealotry, i.e., the presence of agents who never change state, can drive infinite populations to consensus in all three models. However, while evolutionary games and the partisan voter model permit zealotry-induced consensus for all values of their model parameters, the nonlinear voter model does not. Central to this difference is the shape of the social impact function, which quantifies how the influence of a group scales with size, and is, therefore, a measure of majority and minority effects. We derive general conditions relating the slope of this function at small group sizes to the local stability of consensus. Sublinear impact favors minorities and can override zealotry to prevent consensus, whereas superlinear impact promotes majorities and, therefore, facilitates consensus. We extend the analysis to finite populations, exploring the time-to-consensus, and the shape of quasi-stationary distributions.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 8","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0282676","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study how zealotry and nonlinear social impact affect consensus formation in the nonlinear voter model, evolutionary games, and the partisan voter model. In all three models, consensus is an absorbing state in finite populations, while coexistence is a possible outcome of the deterministic dynamics. We show that sufficiently strong zealotry, i.e., the presence of agents who never change state, can drive infinite populations to consensus in all three models. However, while evolutionary games and the partisan voter model permit zealotry-induced consensus for all values of their model parameters, the nonlinear voter model does not. Central to this difference is the shape of the social impact function, which quantifies how the influence of a group scales with size, and is, therefore, a measure of majority and minority effects. We derive general conditions relating the slope of this function at small group sizes to the local stability of consensus. Sublinear impact favors minorities and can override zealotry to prevent consensus, whereas superlinear impact promotes majorities and, therefore, facilitates consensus. We extend the analysis to finite populations, exploring the time-to-consensus, and the shape of quasi-stationary distributions.

打破共存:狂热vs非线性社会影响。
我们研究了在非线性选民模型、进化博弈和党派选民模型中,狂热和非线性社会影响如何影响共识的形成。在所有三种模型中,共识是有限种群的吸收状态,而共存是确定性动态的可能结果。我们证明了足够强的狂热,即永远不改变状态的主体的存在,可以在所有三个模型中驱动无限的群体达成共识。然而,虽然进化博弈和党派选民模型允许对其模型参数的所有值进行狂热诱导的共识,但非线性选民模型不允许。这种差异的核心是社会影响函数的形状,它量化了一个群体的影响力如何随规模而变化,因此是多数和少数影响的衡量标准。我们得到了该函数在小群大小下的斜率与一致性的局部稳定性有关的一般条件。亚线性影响有利于少数人,可以推翻狂热以阻止共识,而超线性影响促进多数人,因此促进共识。我们将分析扩展到有限总体,探索一致性的时间,以及准平稳分布的形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信