Tianyou Yuan, Changzuan Zhou, Yifan Long, Xiaoqiang Chen, Longzhe Gao, Ya Li, Songwen Chen, Xiaofeng Lu, Juan Xu, Xiaoyu Wu, Genqing Zhou, Shaowen Liu, Wenyi Yang, Yong Wei, Lidong Cai
{"title":"DDX60 protects ischemic myocardial injury and heart dysfunction by improving mitochondrial function via promoting Arl2 mRNA translation.","authors":"Tianyou Yuan, Changzuan Zhou, Yifan Long, Xiaoqiang Chen, Longzhe Gao, Ya Li, Songwen Chen, Xiaofeng Lu, Juan Xu, Xiaoyu Wu, Genqing Zhou, Shaowen Liu, Wenyi Yang, Yong Wei, Lidong Cai","doi":"10.1007/s00018-025-05839-x","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial dysfunction is increasingly recognized as a pivotal driver of cardiomyocyte apoptosis and cardiac deterioration following myocardial infarction (MI). This study identifies a significant upregulation of DDX60 in cardiomyocytes under hypoxic conditions. Elevated DDX60 levels enhance mitochondrial function and attenuate cardiomyocyte apoptosis in vitro, whereas its knockdown induces the opposite effects. In vivo, cardiomyocyte-specific DDX60 knockout markedly exacerbates mitochondrial dysfunction and apoptosis, accelerating post-MI cardiac remodeling and functional decline. Furthermore, we found that Arl2 knockdown partially negates the protective effects of DDX60 overexpression on ATP production and apoptosis. Conversely, adeno-associated virus-9 (AAV9)-mediated Arl2 overexpression partially restores cardiac function, reduces infarct size, and rescues mitochondrial integrity in DDX60 CKO mice post-MI. Mechanistically, DDX60 forms a translational complex with eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) that enhances Arl2 mRNA translation, a process essential for mitochondrial homeostasis. Collectively, these findings establish DDX60 as a key regulator of cardioprotection post-MI by enhancing Arl2 translation, highlighting its potential as a therapeutic target for ischemic heart disease.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"332"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405150/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05839-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial dysfunction is increasingly recognized as a pivotal driver of cardiomyocyte apoptosis and cardiac deterioration following myocardial infarction (MI). This study identifies a significant upregulation of DDX60 in cardiomyocytes under hypoxic conditions. Elevated DDX60 levels enhance mitochondrial function and attenuate cardiomyocyte apoptosis in vitro, whereas its knockdown induces the opposite effects. In vivo, cardiomyocyte-specific DDX60 knockout markedly exacerbates mitochondrial dysfunction and apoptosis, accelerating post-MI cardiac remodeling and functional decline. Furthermore, we found that Arl2 knockdown partially negates the protective effects of DDX60 overexpression on ATP production and apoptosis. Conversely, adeno-associated virus-9 (AAV9)-mediated Arl2 overexpression partially restores cardiac function, reduces infarct size, and rescues mitochondrial integrity in DDX60 CKO mice post-MI. Mechanistically, DDX60 forms a translational complex with eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) that enhances Arl2 mRNA translation, a process essential for mitochondrial homeostasis. Collectively, these findings establish DDX60 as a key regulator of cardioprotection post-MI by enhancing Arl2 translation, highlighting its potential as a therapeutic target for ischemic heart disease.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered