2D PT-symmetric nonlinear couplers: Stability and power dynamics in sinusoidal system.

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-08-01 DOI:10.1063/5.0280866
Jaseera Chilappurath, Aysha Muhsina K
{"title":"2D PT-symmetric nonlinear couplers: Stability and power dynamics in sinusoidal system.","authors":"Jaseera Chilappurath, Aysha Muhsina K","doi":"10.1063/5.0280866","DOIUrl":null,"url":null,"abstract":"<p><p>This work investigates the stability and power dynamics of a beam in a two-dimensional parity-time (PT)-symmetric cubic nonlinear sinusoidal coupled system under varying imaginary potentials. By analyzing eigenvalues, the phase angle indicating the mode synchronization, eigenfunctions, phase evolution, Poynting vector, and power exchange between coupled channels, we identify stability thresholds and characterize the soliton behavior in both PT-symmetric and broken PT-symmetric phases. Below the threshold potential, solitons remain stable, exhibiting periodic power oscillations and symmetric waveforms. Above the threshold, instabilities emerge, leading to asymmetric eigenfunctions, irregular amplitude fluctuations, and distorted power transfer. The transition is marked by a shift from smooth Gaussian-like waveforms to asymmetric, irregular profiles. The oscillation frequency, which dictates the energy transfer between channels, reflects the influence of the gain/loss balance on soliton dynamics. Our findings highlight the crucial role of nonlinearity, coupling strength, and imaginary potential in dictating soliton stability, providing insights into optical beam propagation and nonlinear wave control in PT-symmetric systems.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 8","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0280866","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates the stability and power dynamics of a beam in a two-dimensional parity-time (PT)-symmetric cubic nonlinear sinusoidal coupled system under varying imaginary potentials. By analyzing eigenvalues, the phase angle indicating the mode synchronization, eigenfunctions, phase evolution, Poynting vector, and power exchange between coupled channels, we identify stability thresholds and characterize the soliton behavior in both PT-symmetric and broken PT-symmetric phases. Below the threshold potential, solitons remain stable, exhibiting periodic power oscillations and symmetric waveforms. Above the threshold, instabilities emerge, leading to asymmetric eigenfunctions, irregular amplitude fluctuations, and distorted power transfer. The transition is marked by a shift from smooth Gaussian-like waveforms to asymmetric, irregular profiles. The oscillation frequency, which dictates the energy transfer between channels, reflects the influence of the gain/loss balance on soliton dynamics. Our findings highlight the crucial role of nonlinearity, coupling strength, and imaginary potential in dictating soliton stability, providing insights into optical beam propagation and nonlinear wave control in PT-symmetric systems.

二维pt对称非线性耦合器:正弦系统的稳定性和功率动力学。
本文研究了二维奇偶时间(PT)对称三次非线性正弦耦合系统在变虚势作用下光束的稳定性和功率动力学。通过分析特征值、表示模式同步的相位角、特征函数、相位演化、Poynting向量和耦合通道之间的功率交换,我们确定了稳定性阈值,并表征了pt对称相位和pt对称破缺相位下的孤子行为。在阈值电位以下,孤子保持稳定,表现出周期性的功率振荡和对称波形。超过阈值,不稳定性出现,导致不对称特征函数,不规则振幅波动和扭曲的功率传输。这种转变的标志是从光滑的类高斯波形转变为不对称的不规则波形。振荡频率决定了通道间的能量传递,反映了增益/损耗平衡对孤子动力学的影响。我们的发现强调了非线性、耦合强度和虚势在决定孤子稳定性中的关键作用,为pt对称系统中的光束传播和非线性波控制提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信