Signal-noise separation using unsupervised reservoir computing.

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-08-01 DOI:10.1063/5.0278540
Jaesung Choi, Pilwon Kim
{"title":"Signal-noise separation using unsupervised reservoir computing.","authors":"Jaesung Choi, Pilwon Kim","doi":"10.1063/5.0278540","DOIUrl":null,"url":null,"abstract":"<p><p>Removing noise from a signal without knowing the characteristics of the noise is a challenging task. This paper introduces a signal-noise separation method based on time-series prediction. We use Reservoir Computing (RC) to extract the maximum portion of \"predictable information\" from a given signal. Reproducing the deterministic component of the signal using RC, we estimate the noise distribution from the difference between the original signal and the reconstructed one. The method is based on a machine-learning approach and requires no prior knowledge of either the deterministic signal or the noise distribution. It provides a way to identify additivity/multiplicativity of noise and to estimate the signal-to-noise ratio (SNR) indirectly. The method works successfully for combinations of various signals and noise, including the chaotic signal and the highly oscillating sinusoidal signal, which are corrupted by non-Gaussian additive/multiplicative noise. The separation performances are robust and notably outstanding for signals with strong noise, even for those with negative SNR.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 8","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0278540","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Removing noise from a signal without knowing the characteristics of the noise is a challenging task. This paper introduces a signal-noise separation method based on time-series prediction. We use Reservoir Computing (RC) to extract the maximum portion of "predictable information" from a given signal. Reproducing the deterministic component of the signal using RC, we estimate the noise distribution from the difference between the original signal and the reconstructed one. The method is based on a machine-learning approach and requires no prior knowledge of either the deterministic signal or the noise distribution. It provides a way to identify additivity/multiplicativity of noise and to estimate the signal-to-noise ratio (SNR) indirectly. The method works successfully for combinations of various signals and noise, including the chaotic signal and the highly oscillating sinusoidal signal, which are corrupted by non-Gaussian additive/multiplicative noise. The separation performances are robust and notably outstanding for signals with strong noise, even for those with negative SNR.

基于无监督油藏计算的信噪分离。
在不知道噪声特性的情况下从信号中去除噪声是一项具有挑战性的任务。介绍了一种基于时间序列预测的信噪分离方法。我们使用储层计算(RC)从给定信号中提取“可预测信息”的最大部分。利用RC再现信号的确定性分量,根据原始信号与重构信号的差估计噪声分布。该方法基于机器学习方法,不需要预先了解确定性信号或噪声分布。它提供了一种识别噪声的可加性/乘性和间接估计信噪比(SNR)的方法。该方法适用于各种信号和噪声的组合,包括混沌信号和高振荡正弦信号,这些信号和噪声被非高斯加性/乘性噪声破坏。该分离方法具有鲁棒性,对于具有强噪声的信号,甚至对于具有负信噪比的信号,其分离性能都非常出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信