{"title":"A key spectral tuning site of UV-sensitive vertebrate non-visual opsin Opn5.","authors":"Takahiro Yamashita, Kazuyuki Asamoto, Kengo Fujii, Chihiro Fujiyabu, Hideyo Ohuchi, Yoshinori Shichida","doi":"10.1007/s00018-025-05879-3","DOIUrl":null,"url":null,"abstract":"<p><p>Opsins are photoreceptive proteins responsible for visual and non-visual photoreceptions in animals. In general, vertebrates have multiple visual and non-visual opsins whose spectral sensitivities range from the UV to the red region. Among these opsins, Opn5 has been widely identified in vertebrates from fishes to primates and functions as a non-visual opsin in various tissues, including the retina and brain. Vertebrate Opn5 has been characterized as a UV-sensitive bistable opsin. Thus, Opn5 provides one of the molecular mechanisms determining the short wavelength limit that vertebrates can detect. In this study, we searched for the amino acid residue responsible for the UV light sensitivity of Opn5. Our mutational analysis revealed that Opn5 acquired visible light sensitivity by the substitution of Lys91 with an amino acid other than an arginine or tyrosine residue. In addition, the mutations at Lys91 altered the preferential binding of the retinal isomers in Opn5. Therefore, the conservation of Lys91 among vertebrate Opn5 proteins would be necessary to enable Opn5 to work as the shortest wavelength sensor in various tissues.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"334"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405127/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05879-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Opsins are photoreceptive proteins responsible for visual and non-visual photoreceptions in animals. In general, vertebrates have multiple visual and non-visual opsins whose spectral sensitivities range from the UV to the red region. Among these opsins, Opn5 has been widely identified in vertebrates from fishes to primates and functions as a non-visual opsin in various tissues, including the retina and brain. Vertebrate Opn5 has been characterized as a UV-sensitive bistable opsin. Thus, Opn5 provides one of the molecular mechanisms determining the short wavelength limit that vertebrates can detect. In this study, we searched for the amino acid residue responsible for the UV light sensitivity of Opn5. Our mutational analysis revealed that Opn5 acquired visible light sensitivity by the substitution of Lys91 with an amino acid other than an arginine or tyrosine residue. In addition, the mutations at Lys91 altered the preferential binding of the retinal isomers in Opn5. Therefore, the conservation of Lys91 among vertebrate Opn5 proteins would be necessary to enable Opn5 to work as the shortest wavelength sensor in various tissues.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered