{"title":"Selenized neural stem cell-derived exosomes: A neotype therapeutic agent for traumatic injuries of the central nervous system.","authors":"Wenjing Wang, Guihong Lu, Peilin Guo, Haochong Zhang, Yan Wang, Diwei Zheng, Chengliang Lyu, Dongfang Wang, Shang Li, Feng Li, Jiawei Zhao, Meng Qin, Weiping Li, Hui Tan, Guanghui Ma, Wei Wei","doi":"10.1016/j.xcrm.2025.102319","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative damage and neuroinflammation are the key features of central nervous system (CNS) injury. Inspired by the neuroprotective properties of neural stem cell-derived exosomes (NExo) and the reactive oxygen species (ROS) scavenging ability of selenium, we develop an advanced NExo bearing ultrasmall nano-selenium (∼3.5 nm) via lipid-mediated nucleation (SeNExo). In addition to maintaining the biological components of NExo, the resulting SeNExo exhibits a Se-O bond that dramatically enhances its ROS-scavenging performance. SeNExo penetrates the blood-brain barrier (BBB) via the apolipoprotein E and prolow-density lipoprotein receptor-related protein 1 (APOE_LRP-1) interaction. Through proteomics, microRNA (miRNA) omics, and single-nucleus RNA sequencing, we find that SeNExo can alleviate neuronal apoptosis, restore glia homeostasis, and remodel glia-neuron networks. Therefore, SeNExo confers potent therapeutic benefits, significantly reducing cerebral lesions in a murine traumatic brain injury model. Even extending to a murine spinal cord injury model, SeNExo promotes locomotory recovery, further supporting SeNExo as a neotype and a promising therapeutic agent for treating traumatic CNS injury.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102319"},"PeriodicalIF":10.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490213/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102319","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oxidative damage and neuroinflammation are the key features of central nervous system (CNS) injury. Inspired by the neuroprotective properties of neural stem cell-derived exosomes (NExo) and the reactive oxygen species (ROS) scavenging ability of selenium, we develop an advanced NExo bearing ultrasmall nano-selenium (∼3.5 nm) via lipid-mediated nucleation (SeNExo). In addition to maintaining the biological components of NExo, the resulting SeNExo exhibits a Se-O bond that dramatically enhances its ROS-scavenging performance. SeNExo penetrates the blood-brain barrier (BBB) via the apolipoprotein E and prolow-density lipoprotein receptor-related protein 1 (APOE_LRP-1) interaction. Through proteomics, microRNA (miRNA) omics, and single-nucleus RNA sequencing, we find that SeNExo can alleviate neuronal apoptosis, restore glia homeostasis, and remodel glia-neuron networks. Therefore, SeNExo confers potent therapeutic benefits, significantly reducing cerebral lesions in a murine traumatic brain injury model. Even extending to a murine spinal cord injury model, SeNExo promotes locomotory recovery, further supporting SeNExo as a neotype and a promising therapeutic agent for treating traumatic CNS injury.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.