{"title":"Engineered T cells stimulate dendritic cell recruitment and antigen spreading for potent anti-tumor immunity.","authors":"Zhen Xiao, Jiajia Wang, Shidian He, Lin Wang, Jingxing Yang, Wenhui Li, Kaili Ma, Yabo Zhou, Xiaowei Liu, Shiyou Wang, Yu Yang, Minmin Ge, An Gao, Kun Tang, Jing Huang, Chen Wang, Liyuan Zhang, Hai-Xi Sun, Lianjun Zhang","doi":"10.1016/j.xcrm.2025.102307","DOIUrl":null,"url":null,"abstract":"<p><p>Current T cell-based immunotherapeutic strategies show limited success in treating solid tumors due to insufficient dendritic cell (DC) activity, particularly cross-presenting conventional type 1 dendritic cells (cDC1s). DC scarcity and dysfunction hinder T cell expansion and differentiation, greatly limiting anti-tumor responses. In this study, we propose a T cell engineering strategy to enhance interaction with XCR1<sup>+</sup> cDC1s. Adoptively transferred T cells engineered to secrete Flt3L and XCL1 (FX) promote DC trafficking and maturation and improve DC-T cell interaction, while maintaining a pool of TCF1<sup>+</sup>SlamF6<sup>+</sup> stem-like T cells. Importantly, FX-engineered T cells trigger robust antigen spreading and potent endogenous polyclonal T cell response, enabling the recognition and elimination of tumors with heterogeneous antigens and preventing immune escape. The therapeutic efficacy of FX-armed chimeric antigen receptor (CAR)-T cells is further validated in the Flt3KO&hFLT3LG humanized mouse model. This strategy offers a promising avenue for enhancing DC-T cell interactions, paving the way for more effective immunotherapy against solid tumors.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102307"},"PeriodicalIF":10.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490219/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102307","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Current T cell-based immunotherapeutic strategies show limited success in treating solid tumors due to insufficient dendritic cell (DC) activity, particularly cross-presenting conventional type 1 dendritic cells (cDC1s). DC scarcity and dysfunction hinder T cell expansion and differentiation, greatly limiting anti-tumor responses. In this study, we propose a T cell engineering strategy to enhance interaction with XCR1+ cDC1s. Adoptively transferred T cells engineered to secrete Flt3L and XCL1 (FX) promote DC trafficking and maturation and improve DC-T cell interaction, while maintaining a pool of TCF1+SlamF6+ stem-like T cells. Importantly, FX-engineered T cells trigger robust antigen spreading and potent endogenous polyclonal T cell response, enabling the recognition and elimination of tumors with heterogeneous antigens and preventing immune escape. The therapeutic efficacy of FX-armed chimeric antigen receptor (CAR)-T cells is further validated in the Flt3KO&hFLT3LG humanized mouse model. This strategy offers a promising avenue for enhancing DC-T cell interactions, paving the way for more effective immunotherapy against solid tumors.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.