HECTD3 E3 ligase mediates ubiquitination of AKT-phosphorylated CMTM3 in HER2-overexpressed breast cancer cells.

IF 2.9 3区 医学 Q2 ONCOLOGY
Jun Wang, Delong Wang, Xinxing Zhang, Xiaoyang Xu
{"title":"HECTD3 E3 ligase mediates ubiquitination of AKT-phosphorylated CMTM3 in HER2-overexpressed breast cancer cells.","authors":"Jun Wang, Delong Wang, Xinxing Zhang, Xiaoyang Xu","doi":"10.1093/carcin/bgaf048","DOIUrl":null,"url":null,"abstract":"<p><p>CKLF-like MARVEL transmembrane domain-containing (CMTM) proteins play pivotal roles in tumorigenesis and cancer progression across various malignancies. However, their expression profiles and regulatory mechanisms in distinct subtypes of breast cancer remain largely undefined. In this study, we systematically analysed the expression of all nine CMTM family members across major molecular subtypes of breast cancer, including Luminal A, Luminal B, HER2-positive (HER2+), and triple-negative breast cancer (TNBC). Among these, CMTM3 was uniquely downregulated in Luminal B and HER2+ breast cancer cells and functioned as a tumor suppressor. Overexpression of HER2 in normal breast epithelial cell lines led to the phosphorylation of CMTM3. Molecular and biochemical analyses revealed that HER2 overexpression activated the downstream phosphoinositide 3-kinase (PI3K)/protein kinase B (also known as RAC-Alpha Serine/Threonine-Protein Kinase, AKT) signaling pathway in Luminal B and HER2+ breast cancer cells. AKT1 directly phosphorylated CMTM3 at serine 181 (Ser181), a modification that facilitated its recognition and ubiquitination by the E3 ligase HECT domain E3 ubiquitin protein ligase 3 (HECTD3), ultimately targeting CMTM3 for proteasomal degradation. Functional assays demonstrated that either knockdown of HECTD3 or pharmacological inhibition of PI3K/AKT signaling stabilized CMTM3 protein levels. Moreover, reintroducing a nonphosphorylatable CMTM3 mutant (CMTM3S181A) into CMTM3 knockout breast cancer cells resulted in significantly reduced proliferation, colony formation, invasive capacity, and in vivo tumor growth compared with cells expressing wild-type CMTM3 (CMTM3WT). Collectively, these findings reveal a previously unrecognized posttranslational regulatory mechanism of CMTM3 and suggest that targeting the PI3K/AKT-HECTD3-CMTM3 axis may offer a promising therapeutic approach for treating HER2+ breast cancers.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/carcin/bgaf048","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

CKLF-like MARVEL transmembrane domain-containing (CMTM) proteins play pivotal roles in tumorigenesis and cancer progression across various malignancies. However, their expression profiles and regulatory mechanisms in distinct subtypes of breast cancer remain largely undefined. In this study, we systematically analysed the expression of all nine CMTM family members across major molecular subtypes of breast cancer, including Luminal A, Luminal B, HER2-positive (HER2+), and triple-negative breast cancer (TNBC). Among these, CMTM3 was uniquely downregulated in Luminal B and HER2+ breast cancer cells and functioned as a tumor suppressor. Overexpression of HER2 in normal breast epithelial cell lines led to the phosphorylation of CMTM3. Molecular and biochemical analyses revealed that HER2 overexpression activated the downstream phosphoinositide 3-kinase (PI3K)/protein kinase B (also known as RAC-Alpha Serine/Threonine-Protein Kinase, AKT) signaling pathway in Luminal B and HER2+ breast cancer cells. AKT1 directly phosphorylated CMTM3 at serine 181 (Ser181), a modification that facilitated its recognition and ubiquitination by the E3 ligase HECT domain E3 ubiquitin protein ligase 3 (HECTD3), ultimately targeting CMTM3 for proteasomal degradation. Functional assays demonstrated that either knockdown of HECTD3 or pharmacological inhibition of PI3K/AKT signaling stabilized CMTM3 protein levels. Moreover, reintroducing a nonphosphorylatable CMTM3 mutant (CMTM3S181A) into CMTM3 knockout breast cancer cells resulted in significantly reduced proliferation, colony formation, invasive capacity, and in vivo tumor growth compared with cells expressing wild-type CMTM3 (CMTM3WT). Collectively, these findings reveal a previously unrecognized posttranslational regulatory mechanism of CMTM3 and suggest that targeting the PI3K/AKT-HECTD3-CMTM3 axis may offer a promising therapeutic approach for treating HER2+ breast cancers.

在her2过表达的乳腺癌细胞中,hector 3 E3连接酶介导akt磷酸化的CMTM3泛素化。
CMTM (cklf样漫威跨膜结构域)蛋白在各种恶性肿瘤的发生和癌症进展中起关键作用。然而,它们在不同亚型乳腺癌中的表达谱和调控机制在很大程度上仍未明确。在这项研究中,我们系统地分析了所有9个CMTM家族成员在乳腺癌主要分子亚型中的表达,包括Luminal A、Luminal B、HER2阳性(HER2+)和三阴性乳腺癌(TNBC)。其中,CMTM3在Luminal B和HER2+乳腺癌细胞中唯一下调,并作为肿瘤抑制因子发挥作用。正常乳腺上皮细胞系中HER2的过表达导致CMTM3的磷酸化。分子和生化分析表明,HER2过表达激活了Luminal B和HER2+乳腺癌细胞中下游磷酸肌肽3激酶(PI3K)/蛋白激酶B (AKT)信号通路。AKT1直接磷酸化CMTM3丝氨酸181 (Ser181),这一修饰促进了其被E3连接酶hector 3 (HECT结构域E3泛素蛋白连接酶3)识别和泛素化,最终靶向CMTM3进行蛋白酶体降解。功能分析表明,抑制hector 3或药理抑制PI3K/AKT信号通路均可稳定CMTM3蛋白水平。此外,将非磷酸化CMTM3突变体(CMTM3S181A)重新引入CMTM3敲除的乳腺癌细胞中,与表达野生型CMTM3 (CMTM3WT)的细胞相比,其增殖、集落形成、侵袭能力和体内肿瘤生长显著降低。总的来说,这些发现揭示了CMTM3的翻译后调控机制,并提示靶向PI3K/ akt - hector 3-CMTM3轴可能为治疗HER2+乳腺癌提供了一种有希望的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carcinogenesis
Carcinogenesis 医学-肿瘤学
CiteScore
9.20
自引率
2.10%
发文量
95
审稿时长
1 months
期刊介绍: Carcinogenesis: Integrative Cancer Research is a multi-disciplinary journal that brings together all the varied aspects of research that will ultimately lead to the prevention of cancer in man. The journal publishes papers that warrant prompt publication in the areas of Biology, Genetics and Epigenetics (including the processes of promotion, progression, signal transduction, apoptosis, genomic instability, growth factors, cell and molecular biology, mutation, DNA repair, genetics, etc.), Cancer Biomarkers and Molecular Epidemiology (including genetic predisposition to cancer, and epidemiology), Inflammation, Microenvironment and Prevention (including molecular dosimetry, chemoprevention, nutrition and cancer, etc.), and Carcinogenesis (including oncogenes and tumor suppressor genes in carcinogenesis, therapy resistance of solid tumors, cancer mouse models, apoptosis and senescence, novel therapeutic targets and cancer drugs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信