Guosheng Gu, Haowei Wu, Haojie Han, Zhiyi Lin, Yuping Sun, Guobo Xie, Qing Su, Zhenguo Liu
{"title":"MVSGDR: multi-view stacked graph convolutional network for drug repositioning.","authors":"Guosheng Gu, Haowei Wu, Haojie Han, Zhiyi Lin, Yuping Sun, Guobo Xie, Qing Su, Zhenguo Liu","doi":"10.1093/bib/bbaf396","DOIUrl":null,"url":null,"abstract":"<p><p>Drug repositioning (DR) presents a cost-effective strategy for drug development by identifying novel therapeutic applications for existing drugs. Current computational approaches remain constrained by their inability to synergize localized substructure patterns with global network semantics, leading to overreliance on data augmentation to mitigate latent drug-disease association (DDA) information gaps. To address these limitations, we present multi-view stacked graph convolutional network (MVSGDR), a novel DR framework featuring three technical innovations: (i) multi-view stacked module that enables depth-wise feature enhancement through hierarchical aggregation of multi-hop neighborhood interactions across distinct graph convolutional layers; (ii) bi-level subgraph transformer module that decomposes DDAs into METIS (a graph partitioning tool) informative subgraphs for breadth-wise analysis of external and internal subgraph drug-disease relationships; and (iii) negative sampling balancing strategy that mitigates sample imbalance through negative sample synthesis. Extensive 10-fold cross-validation experiments across four benchmark datasets confirm MVSGDR's superior performance, demonstrating its statistically significant improvements over existing methods. Moreover, case studies further validate MVSGDR's potential utility through identification of previously unreported DDAs with supporting literature evidence.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 5","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12403086/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf396","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Drug repositioning (DR) presents a cost-effective strategy for drug development by identifying novel therapeutic applications for existing drugs. Current computational approaches remain constrained by their inability to synergize localized substructure patterns with global network semantics, leading to overreliance on data augmentation to mitigate latent drug-disease association (DDA) information gaps. To address these limitations, we present multi-view stacked graph convolutional network (MVSGDR), a novel DR framework featuring three technical innovations: (i) multi-view stacked module that enables depth-wise feature enhancement through hierarchical aggregation of multi-hop neighborhood interactions across distinct graph convolutional layers; (ii) bi-level subgraph transformer module that decomposes DDAs into METIS (a graph partitioning tool) informative subgraphs for breadth-wise analysis of external and internal subgraph drug-disease relationships; and (iii) negative sampling balancing strategy that mitigates sample imbalance through negative sample synthesis. Extensive 10-fold cross-validation experiments across four benchmark datasets confirm MVSGDR's superior performance, demonstrating its statistically significant improvements over existing methods. Moreover, case studies further validate MVSGDR's potential utility through identification of previously unreported DDAs with supporting literature evidence.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.