{"title":"Basophil-derived exosomes exacerbate systemic lupus erythematosus by regulating B-cell proliferation via miR-24550.","authors":"Jiaxuan Chen, Shuzhen Liao, Jiaqi Lun, Xing Lu, Bitang Huang, Xiaoxian Liu, Xiaowei Xu, Lawei Yang, Fengbiao Guo, Liuyong You, Haiyan Xiao, Hua-Feng Liu, Qingjun Pan","doi":"10.1186/s12916-025-04324-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Systemic lupus erythematosus (SLE) is a complex autoimmune disease where B-cell proliferation and activation play a pivotal role in pathogenesis. While the role of basophils in SLE is recognized, the impact of basophil-derived exosomes on B-cell proliferation and activation has not been thoroughly investigated.</p><p><strong>Methods: </strong>Exosomes from human basophils in both resting and activated states were isolated and characterized. These exosomes were then co-cultured with B cells to assess their effects on B-cell survival and proliferation. To investigate the in vivo roles, a Pristane-induced lupus model in Mcpt8<sup>flox/flox CAGGCre-</sup><sup>ERTM</sup> mice was utilized. The Pristane-Mcpt8<sup>flox/flox, CAGGCre-ERTM</sup> mice were analyzed for basophil-derived exosome accumulation in the spleen and kidneys, and the effects on immune cell proliferation and plasma cell-plasmablast balance were assessed. Transcriptomic analysis was conducted on basophil-derived exosomes to identify key non-coding RNAs. Lupus mice were humanized by transplanting peripheral blood mononuclear cells (PBMCs) from patients with SLE into immunodeficient mice to evaluate the effects of intervening miR-24550 in B cells.</p><p><strong>Results: </strong>Activated basophil-derived exosomes were found to enhance B-cell survival and proliferation in patients with SLE. In the lupus mouse model, basophil-derived exosomes accumulated primarily in the spleen and kidneys, inducing excessive immune cell proliferation and disrupting the plasma cell-plasmablast balance, which worsened kidney damage. Transcriptomic analysis revealed key non-coding RNAs within basophil-derived exosomes. Activated basophil-derived exosomes were internalized by B cells, releasing miR-24550, which promoted B-cell proliferation. In humanized SLE mice, inhibiting miR-24550 in B cells reduced immune hyperactivation and improved renal function, similar to the effects of inhibiting basophil-derived exosomes release in Pristane-Mcpt8<sup>flox/flox, CAGGCre-ERTM</sup> mice. Ultimately, basophil-derived exosomal miR-24550 promotes B-cell proliferation and activation by targeting Krüppel-like factor 5 (KLF5), which exacerbates SLE progression.</p><p><strong>Conclusions: </strong>Basophil-derived exosomal miR-24550 promotes B-cell proliferation and activation by targeting KLF5, thereby exacerbating SLE progression. This study presents a novel strategy for SLE prevention and treatment.</p>","PeriodicalId":9188,"journal":{"name":"BMC Medicine","volume":"23 1","pages":"490"},"PeriodicalIF":8.3000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12374475/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12916-025-04324-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Systemic lupus erythematosus (SLE) is a complex autoimmune disease where B-cell proliferation and activation play a pivotal role in pathogenesis. While the role of basophils in SLE is recognized, the impact of basophil-derived exosomes on B-cell proliferation and activation has not been thoroughly investigated.
Methods: Exosomes from human basophils in both resting and activated states were isolated and characterized. These exosomes were then co-cultured with B cells to assess their effects on B-cell survival and proliferation. To investigate the in vivo roles, a Pristane-induced lupus model in Mcpt8flox/flox CAGGCre-ERTM mice was utilized. The Pristane-Mcpt8flox/flox, CAGGCre-ERTM mice were analyzed for basophil-derived exosome accumulation in the spleen and kidneys, and the effects on immune cell proliferation and plasma cell-plasmablast balance were assessed. Transcriptomic analysis was conducted on basophil-derived exosomes to identify key non-coding RNAs. Lupus mice were humanized by transplanting peripheral blood mononuclear cells (PBMCs) from patients with SLE into immunodeficient mice to evaluate the effects of intervening miR-24550 in B cells.
Results: Activated basophil-derived exosomes were found to enhance B-cell survival and proliferation in patients with SLE. In the lupus mouse model, basophil-derived exosomes accumulated primarily in the spleen and kidneys, inducing excessive immune cell proliferation and disrupting the plasma cell-plasmablast balance, which worsened kidney damage. Transcriptomic analysis revealed key non-coding RNAs within basophil-derived exosomes. Activated basophil-derived exosomes were internalized by B cells, releasing miR-24550, which promoted B-cell proliferation. In humanized SLE mice, inhibiting miR-24550 in B cells reduced immune hyperactivation and improved renal function, similar to the effects of inhibiting basophil-derived exosomes release in Pristane-Mcpt8flox/flox, CAGGCre-ERTM mice. Ultimately, basophil-derived exosomal miR-24550 promotes B-cell proliferation and activation by targeting Krüppel-like factor 5 (KLF5), which exacerbates SLE progression.
Conclusions: Basophil-derived exosomal miR-24550 promotes B-cell proliferation and activation by targeting KLF5, thereby exacerbating SLE progression. This study presents a novel strategy for SLE prevention and treatment.
期刊介绍:
BMC Medicine is an open access, transparent peer-reviewed general medical journal. It is the flagship journal of the BMC series and publishes outstanding and influential research in various areas including clinical practice, translational medicine, medical and health advances, public health, global health, policy, and general topics of interest to the biomedical and sociomedical professional communities. In addition to research articles, the journal also publishes stimulating debates, reviews, unique forum articles, and concise tutorials. All articles published in BMC Medicine are included in various databases such as Biological Abstracts, BIOSIS, CAS, Citebase, Current contents, DOAJ, Embase, MEDLINE, PubMed, Science Citation Index Expanded, OAIster, SCImago, Scopus, SOCOLAR, and Zetoc.