Dual mechanism of the OXA-23 carbapenemase inhibition by the carbapenem NA-1-157.

IF 4.5 2区 医学 Q2 MICROBIOLOGY
Antimicrobial Agents and Chemotherapy Pub Date : 2025-10-01 Epub Date: 2025-08-20 DOI:10.1128/aac.00918-25
Marta Toth, Nichole K Stewart, Pojun Quan, Md Mahbub Kabir Khan, Jonathan Cox, John D Buynak, Clyde A Smith, Sergei B Vakulenko
{"title":"Dual mechanism of the OXA-23 carbapenemase inhibition by the carbapenem NA-1-157.","authors":"Marta Toth, Nichole K Stewart, Pojun Quan, Md Mahbub Kabir Khan, Jonathan Cox, John D Buynak, Clyde A Smith, Sergei B Vakulenko","doi":"10.1128/aac.00918-25","DOIUrl":null,"url":null,"abstract":"<p><p>Carbapenem-resistant <i>Acinetobacter baumannii</i> continues to be a leading cause of life-threatening infections that result in high mortality rates. The major cause of carbapenem resistance in this pathogen is the production of class D carbapenemases, enzymes that inactivate the last resort carbapenem antibiotics, thus significantly diminishing the available therapeutic options. In this study, we evaluated the interaction of OXA-23, the most widely disseminated class D carbapenemase in <i>A. baumannii</i> clinical isolates, with the atypically modified carbapenem, NA-1-157. The MICs of this compound against strains producing OXA-23 were reduced from highly resistant levels observed for the commercial carbapenems meropenem and imipenem (16-128 µg/mL) to sensitive or intermediate levels (2-4 µg/mL). Kinetic studies showed that NA-1-157 inhibits the enzyme due to a significant decrease (>2,000-fold) in the deacylation rate relative to its closest structural analog, meropenem. Structural studies and molecular dynamics simulations demonstrated that inhibition is caused by both the inability of a water molecule to get close enough to the scissile bond to perform deacylation and by partial decarboxylation of the catalytic lysine residue upon formation of the acyl-enzyme intermediate.</p>","PeriodicalId":8152,"journal":{"name":"Antimicrobial Agents and Chemotherapy","volume":" ","pages":"e0091825"},"PeriodicalIF":4.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antimicrobial Agents and Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/aac.00918-25","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbapenem-resistant Acinetobacter baumannii continues to be a leading cause of life-threatening infections that result in high mortality rates. The major cause of carbapenem resistance in this pathogen is the production of class D carbapenemases, enzymes that inactivate the last resort carbapenem antibiotics, thus significantly diminishing the available therapeutic options. In this study, we evaluated the interaction of OXA-23, the most widely disseminated class D carbapenemase in A. baumannii clinical isolates, with the atypically modified carbapenem, NA-1-157. The MICs of this compound against strains producing OXA-23 were reduced from highly resistant levels observed for the commercial carbapenems meropenem and imipenem (16-128 µg/mL) to sensitive or intermediate levels (2-4 µg/mL). Kinetic studies showed that NA-1-157 inhibits the enzyme due to a significant decrease (>2,000-fold) in the deacylation rate relative to its closest structural analog, meropenem. Structural studies and molecular dynamics simulations demonstrated that inhibition is caused by both the inability of a water molecule to get close enough to the scissile bond to perform deacylation and by partial decarboxylation of the catalytic lysine residue upon formation of the acyl-enzyme intermediate.

碳青霉烯NA-1-157抑制OXA-23碳青霉烯酶的双重机制
耐碳青霉烯鲍曼不动杆菌仍然是危及生命的感染的主要原因,导致高死亡率。这种病原体中碳青霉烯类耐药性的主要原因是产生D类碳青霉烯酶,这种酶使最后一种碳青霉烯类抗生素失活,从而大大减少了可用的治疗选择。在这项研究中,我们评估了鲍曼不动杆菌临床分离株中分布最广泛的D类碳青霉烯酶OXA-23与非典型修饰碳青霉烯NA-1-157的相互作用。该化合物对产生OXA-23的菌株的mic从对商业碳青霉烯类药物美罗培南和亚胺培南的高度耐药水平(16-128µg/mL)降至敏感或中等水平(2-4µg/mL)。动力学研究表明,NA-1-157抑制酶的原因是,相对于其最接近的结构类似物美罗培南,NA-1-157的去酰化速率显著降低(约2000倍)。结构研究和分子动力学模拟表明,抑制是由于水分子无法足够靠近可剪切键进行去酰化,以及在酰基酶中间体形成时催化赖氨酸残基的部分脱羧造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.00
自引率
8.20%
发文量
762
审稿时长
3 months
期刊介绍: Antimicrobial Agents and Chemotherapy (AAC) features interdisciplinary studies that build our understanding of the underlying mechanisms and therapeutic applications of antimicrobial and antiparasitic agents and chemotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信