{"title":"Reprogramming Iron Metabolism via the RIG-I/c-Myc/FTH Axis Mitigates Renal Ischemia-Reperfusion Injury.","authors":"Yulu Zhang, Jia Xing, Li Yao, Yu Zou, Hui Peng, Xiling Yi, Lifang Bai, Yang Yu, Hanzhe Liu, Xue Li, Xiaoyue Zhai","doi":"10.1177/15230864251369883","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aims:</i></b> Iron metabolism disorders are critical in the pathogenesis of acute kidney ischemia-reperfusion injury (IRI). However, the molecular mechanisms driving these disturbances remain poorly understood. <b><i>Results:</i></b> In IRI mouse kidneys, pathological alterations, iron metabolism disruptions, and functional impairments were observed. Retinoic acid-inducible gene-I (RIG-I), transcription factor c-Myc, and ferritin heavy chain (FTH) exhibited elevated expression and colocalization in tubular epithelial cells, accompanied by decreased glutathione peroxidase 4 (GPX4) level and evidence of ferroptosis. Further <i>in vitro</i> studies revealed that RIG-I promoted c-Myc activation. The latter demonstrated its positive regulation of FTH transcription by chromatin immunoprecipitation assays and c-Myc siRNA experiments. Interestingly, FTH overexpression resulted in elevated levels of RIG-I, transferrin receptor, ferroportin, and nuclear receptor coactivator 4. Ultimately, the c-Myc inhibitor 10058-F4 reversed all adverse alterations and demonstrated a protective role in IRI mouse kidneys and mouse kidney tubule cells subjected to the ferroptosis inducer erastin, RIG-I agonist, or hypoxia/reoxygenation. This reversal was reflected in improved renal morphology and function, balanced iron metabolism, increased GPX4 level, decreased 4-hydroxynonenal level, reduced inflammatory cell infiltration, interleukin-1 beta release, and kidney injury molecule 1 expression. <b><i>Innovation:</i></b> This study proposes a novel mechanism in which c-Myc is activated by elevated RIG-I in IRI kidneys and positively regulates FTH transcription, therefore involving iron metabolism disorders. <b><i>Conclusions:</i></b> The RIG-I, c-Myc, and FTH disrupt iron homeostasis, and the c-Myc inhibition stabilizes iron metabolism and mitigates oxidative stress, suggesting a potential therapeutic target in IRI. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/15230864251369883","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Iron metabolism disorders are critical in the pathogenesis of acute kidney ischemia-reperfusion injury (IRI). However, the molecular mechanisms driving these disturbances remain poorly understood. Results: In IRI mouse kidneys, pathological alterations, iron metabolism disruptions, and functional impairments were observed. Retinoic acid-inducible gene-I (RIG-I), transcription factor c-Myc, and ferritin heavy chain (FTH) exhibited elevated expression and colocalization in tubular epithelial cells, accompanied by decreased glutathione peroxidase 4 (GPX4) level and evidence of ferroptosis. Further in vitro studies revealed that RIG-I promoted c-Myc activation. The latter demonstrated its positive regulation of FTH transcription by chromatin immunoprecipitation assays and c-Myc siRNA experiments. Interestingly, FTH overexpression resulted in elevated levels of RIG-I, transferrin receptor, ferroportin, and nuclear receptor coactivator 4. Ultimately, the c-Myc inhibitor 10058-F4 reversed all adverse alterations and demonstrated a protective role in IRI mouse kidneys and mouse kidney tubule cells subjected to the ferroptosis inducer erastin, RIG-I agonist, or hypoxia/reoxygenation. This reversal was reflected in improved renal morphology and function, balanced iron metabolism, increased GPX4 level, decreased 4-hydroxynonenal level, reduced inflammatory cell infiltration, interleukin-1 beta release, and kidney injury molecule 1 expression. Innovation: This study proposes a novel mechanism in which c-Myc is activated by elevated RIG-I in IRI kidneys and positively regulates FTH transcription, therefore involving iron metabolism disorders. Conclusions: The RIG-I, c-Myc, and FTH disrupt iron homeostasis, and the c-Myc inhibition stabilizes iron metabolism and mitigates oxidative stress, suggesting a potential therapeutic target in IRI. Antioxid. Redox Signal. 00, 000-000.
期刊介绍:
Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas.
ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes.
ARS coverage includes:
-ROS/RNS as messengers
-Gaseous signal transducers
-Hypoxia and tissue oxygenation
-microRNA
-Prokaryotic systems
-Lessons from plant biology