Peyton Classon, Alexander Q Wixom, Natalia Calixto Mancipe, Rondell P Graham, Yu Zhao, Nguyen Tran, Timucin Taner, Davide Povero
{"title":"Role of Long Chain Acyl-CoA Synthetases in MASH-driven Hepatocellular Carcinoma and Ferroptosis.","authors":"Peyton Classon, Alexander Q Wixom, Natalia Calixto Mancipe, Rondell P Graham, Yu Zhao, Nguyen Tran, Timucin Taner, Davide Povero","doi":"10.1152/ajpgi.00096.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic-associated steatohepatitis-driven hepatocellular carcinoma (MASH-HCC) incidence is rapidly rising worldwide. Lipid metabolic reprogramming is a hallmark of solid tumors to satisfy cancer high metabolic demand. However, it may confer sensitivity to ferroptosis, a cell death mode driven by iron-dependent lipid peroxidation. In this report, we describe the lipid metabolic landscape in MASH-HCC and characterize long chain acyl-CoA synthetases (ACSLs), a family of enzymes involved in synthesis of cellular lipids. Bulk RNA-sequencing, single-cell RNA-sequencing, spatial transcriptomics and immunohistochemistry analyses of human MASH-HCC were integrated to identify differentially expressed lipid metabolism genes. Ferroptosis <i>in vitro</i> was assessed in human HCC cell lines. A characterization of ACSLs was also conducted at the single-cell level in a diet-induced experimental murine model of MASH-HCC. Our analysis revealed that in human MASH-HCC, ACSLs exhibit a heterogeneous expression, with ACSL4 notably enriched in tumor tissues, contrasting with ACSL5 upregulation in non-cancerous MASH. We identified a unique lipid metabolic gene signature of MASH-HCC, which included genes associated with ferroptosis vulnerability. <i>In vitro</i>, high ACSL4 expression was associated with increased ferroptosis sensitivity in human HCC cell lines. Lastly, single-cell RNA-sequencing revealed elevated ACSL4 expression in immune cells in a murine MASH-HCC model, suggesting a role of ACSL4 in shaping the tumor immune microenvironment. Overall, this report offers new insights into lipid metabolic landscape and ferroptosis sensitivity for novel MASH-HCC treatments.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00096.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolic-associated steatohepatitis-driven hepatocellular carcinoma (MASH-HCC) incidence is rapidly rising worldwide. Lipid metabolic reprogramming is a hallmark of solid tumors to satisfy cancer high metabolic demand. However, it may confer sensitivity to ferroptosis, a cell death mode driven by iron-dependent lipid peroxidation. In this report, we describe the lipid metabolic landscape in MASH-HCC and characterize long chain acyl-CoA synthetases (ACSLs), a family of enzymes involved in synthesis of cellular lipids. Bulk RNA-sequencing, single-cell RNA-sequencing, spatial transcriptomics and immunohistochemistry analyses of human MASH-HCC were integrated to identify differentially expressed lipid metabolism genes. Ferroptosis in vitro was assessed in human HCC cell lines. A characterization of ACSLs was also conducted at the single-cell level in a diet-induced experimental murine model of MASH-HCC. Our analysis revealed that in human MASH-HCC, ACSLs exhibit a heterogeneous expression, with ACSL4 notably enriched in tumor tissues, contrasting with ACSL5 upregulation in non-cancerous MASH. We identified a unique lipid metabolic gene signature of MASH-HCC, which included genes associated with ferroptosis vulnerability. In vitro, high ACSL4 expression was associated with increased ferroptosis sensitivity in human HCC cell lines. Lastly, single-cell RNA-sequencing revealed elevated ACSL4 expression in immune cells in a murine MASH-HCC model, suggesting a role of ACSL4 in shaping the tumor immune microenvironment. Overall, this report offers new insights into lipid metabolic landscape and ferroptosis sensitivity for novel MASH-HCC treatments.
期刊介绍:
The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.