A Novel Approach by Integrating CT-Based Imaging Data and Machine Learning to Predict Patient-Specific Young's Modulus Values.

IF 1.6 Q3 ORTHOPEDICS
Advances in Orthopedics Pub Date : 2025-08-14 eCollection Date: 2025-01-01 DOI:10.1155/aort/6257188
Resmi S L, Hashim V, Jesna Mohammed, Dileep P N
{"title":"A Novel Approach by Integrating CT-Based Imaging Data and Machine Learning to Predict Patient-Specific Young's Modulus Values.","authors":"Resmi S L, Hashim V, Jesna Mohammed, Dileep P N","doi":"10.1155/aort/6257188","DOIUrl":null,"url":null,"abstract":"<p><p>Finite element analysis (FEA) stands as a cornerstone in preclinical investigations for implant therapy, particularly in orthopaedics and biomechanics. Accurate modelling of bone properties is crucial for meaningful FEA outcomes, considering the complex nature of bone tissue. This study proposes a novel approach by integrating CT-based imaging data and machine learning to predict patient-specific Young's modulus values. A back propagation neural network (BPNN), incorporating texture properties extracted from CT images, demonstrates robustness in predicting Young's modulus. Validation against three-point bending experiments on rabbit femur bones shows promising results, with stress values within 13% of those from FEA. The proposed methodology holds the potential for enhancing preclinical evaluations of implant therapy and fostering the development of patient-specific implants for improved clinical outcomes.</p>","PeriodicalId":7358,"journal":{"name":"Advances in Orthopedics","volume":"2025 ","pages":"6257188"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12370390/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Orthopedics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/aort/6257188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Finite element analysis (FEA) stands as a cornerstone in preclinical investigations for implant therapy, particularly in orthopaedics and biomechanics. Accurate modelling of bone properties is crucial for meaningful FEA outcomes, considering the complex nature of bone tissue. This study proposes a novel approach by integrating CT-based imaging data and machine learning to predict patient-specific Young's modulus values. A back propagation neural network (BPNN), incorporating texture properties extracted from CT images, demonstrates robustness in predicting Young's modulus. Validation against three-point bending experiments on rabbit femur bones shows promising results, with stress values within 13% of those from FEA. The proposed methodology holds the potential for enhancing preclinical evaluations of implant therapy and fostering the development of patient-specific implants for improved clinical outcomes.

Abstract Image

Abstract Image

Abstract Image

结合基于ct的成像数据和机器学习预测患者特定杨氏模量值的新方法。
有限元分析(FEA)是植入物治疗临床前研究的基石,特别是在骨科和生物力学方面。考虑到骨组织的复杂性质,准确的骨特性建模对于有意义的有限元分析结果至关重要。本研究提出了一种新的方法,通过整合基于ct的成像数据和机器学习来预测患者特定的杨氏模量值。结合从CT图像中提取的纹理属性的反向传播神经网络(BPNN)在预测杨氏模量方面表现出鲁棒性。对兔股骨进行三点弯曲实验验证,结果令人鼓舞,应力值在有限元分析结果的13%以内。所提出的方法具有加强临床前评估植入治疗和促进患者特异性植入物的发展,以改善临床结果的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
36
审稿时长
21 weeks
期刊介绍: Advances in Orthopedics is a peer-reviewed, Open Access journal that provides a forum for orthopaedics working on improving the quality of orthopedic health care. The journal publishes original research articles, review articles, and clinical studies related to arthroplasty, hand surgery, limb reconstruction, pediatric orthopaedics, sports medicine, trauma, spinal deformities, and orthopaedic oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信