Andrei Buruiana, Stefan Ioan Florian, Alexandru Ioan Florian, Olga Soritau, Sergiu Susman
{"title":"Endothelial transdifferentiation of glioma stem cells: a literature review.","authors":"Andrei Buruiana, Stefan Ioan Florian, Alexandru Ioan Florian, Olga Soritau, Sergiu Susman","doi":"10.1186/s40478-025-02031-x","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial transdifferentiation represents a multifaceted process wherein glioma stem cells (GSCs) gradually adopt endothelial characteristics, marked by the expression of endothelial markers (CD31, CD34) and functional traits, while concurrently relinquishing their stem-like properties. This phenomenon is heterogenous in glioblastoma (GBM) samples, but holds importance in terms of prognosis. Typically occurring within hypoxic environments, particularly in perinecrotic regions, endothelial transdifferentiation is influenced by the secretome of neighboring cells, which orchestrates the activation of various signaling pathways including Notch during endothelial lineage commitment, PI3K/AKT, Wnt/β-catenin and epithelial-mesenchymal transition (EMT) during both commitment and maturation. Initially, GSCs organize into vascular-like channels resembling vasculogenic mimicry and express CD144; however, this signature diminishes as endothelial maturation progresses. GSC-derived endothelial cells (ECs) eventually integrate with normal ECs from the tumor periphery, yielding a mosaic pattern. Endothelial transdifferentiation plays a role in response to standard treatments such as temozolomide chemotherapy and radiotherapy.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"181"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12372203/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-025-02031-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Endothelial transdifferentiation represents a multifaceted process wherein glioma stem cells (GSCs) gradually adopt endothelial characteristics, marked by the expression of endothelial markers (CD31, CD34) and functional traits, while concurrently relinquishing their stem-like properties. This phenomenon is heterogenous in glioblastoma (GBM) samples, but holds importance in terms of prognosis. Typically occurring within hypoxic environments, particularly in perinecrotic regions, endothelial transdifferentiation is influenced by the secretome of neighboring cells, which orchestrates the activation of various signaling pathways including Notch during endothelial lineage commitment, PI3K/AKT, Wnt/β-catenin and epithelial-mesenchymal transition (EMT) during both commitment and maturation. Initially, GSCs organize into vascular-like channels resembling vasculogenic mimicry and express CD144; however, this signature diminishes as endothelial maturation progresses. GSC-derived endothelial cells (ECs) eventually integrate with normal ECs from the tumor periphery, yielding a mosaic pattern. Endothelial transdifferentiation plays a role in response to standard treatments such as temozolomide chemotherapy and radiotherapy.
期刊介绍:
"Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders.
ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.