Targeting DNA Topoisomerase I for the Treatment of Cancer: Past, Present and Future.

IF 4.5 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Annapoorna Venkatachalam, Scott H Kaufmann
{"title":"Targeting DNA Topoisomerase I for the Treatment of Cancer: Past, Present and Future.","authors":"Annapoorna Venkatachalam, Scott H Kaufmann","doi":"10.1016/j.jmb.2025.169401","DOIUrl":null,"url":null,"abstract":"<p><p>As an enzyme that relaxes torsionally strained DNA, TOP1 is present in all nucleated human somatic cells. Even though this ubiquity makes TOP1 an unlikely anticancer drug target, six FDA-approved antineoplastic treatments, including two approved in the past five years, and a variety of experimental agents inhibit the TOP1 catalytic cycle. To provide insight into the continuing effort to develop TOP1-directed agents, here we briefly review the biology of TOP1, the cellular effects of stabilizing TOP1-DNA covalent complexes, mechanisms of resistance to TOP1 poisons, and strategies to overcome this resistance before describing efforts to develop TOP1 catalytic inhibitors as well as an exciting new generation of tumor targeting nanoparticles and antibody-drug conjugates that deliver TOP1-directed agents to cancers at high concentrations while sparing normal tissues. When paired with inhibitors of DNA damage response pathways, epigenetic therapies, or immune modulators, these new TOP1-directed agents promise to improve the therapy of a wide range of solid tumors.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"169401"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449767/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.169401","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As an enzyme that relaxes torsionally strained DNA, TOP1 is present in all nucleated human somatic cells. Even though this ubiquity makes TOP1 an unlikely anticancer drug target, six FDA-approved antineoplastic treatments, including two approved in the past five years, and a variety of experimental agents inhibit the TOP1 catalytic cycle. To provide insight into the continuing effort to develop TOP1-directed agents, here we briefly review the biology of TOP1, the cellular effects of stabilizing TOP1-DNA covalent complexes, mechanisms of resistance to TOP1 poisons, and strategies to overcome this resistance before describing efforts to develop TOP1 catalytic inhibitors as well as an exciting new generation of tumor targeting nanoparticles and antibody-drug conjugates that deliver TOP1-directed agents to cancers at high concentrations while sparing normal tissues. When paired with inhibitors of DNA damage response pathways, epigenetic therapies, or immune modulators, these new TOP1-directed agents promise to improve the therapy of a wide range of solid tumors.

靶向DNA拓扑异构酶I治疗癌症:过去,现在和未来。
TOP1作为一种酶,可以使扭曲的DNA松弛,存在于所有有核的人体细胞中。尽管这种普遍存在使得TOP1不太可能成为抗癌药物的靶点,但fda批准的六种抗肿瘤治疗方法(包括过去五年批准的两种)和各种实验药物抑制了TOP1的催化循环。为了进一步深入研究以TOP1为导向的药物,本文简要综述了TOP1的生物学特性、稳定TOP1- dna共价复合物的细胞效应、对TOP1毒物的抗性机制、以及克服这种耐药性的策略,然后描述了开发TOP1催化抑制剂的努力,以及令人兴奋的新一代肿瘤靶向纳米颗粒和抗体-药物偶联物,它们将TOP1导向的药物以高浓度递送给癌症,同时保留正常组织。当与DNA损伤反应途径抑制剂、表观遗传疗法或免疫调节剂配对时,这些新的top1导向药物有望改善各种实体肿瘤的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信