Mining Alzheimer's Interactomes, Macromolecular Complexes and Pathways for Drug Discovery.

IF 3.9 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Proteomics Pub Date : 2025-08-25 DOI:10.1002/pmic.70018
Kalpana Panneerselvam, Krishna Kumar Tiwari, Luana Licata, Simona Panni, Sylvie Ricard-Blum, Sucharitha Balu, Susie Huget, Juan Jose Medina Reyes, Eliot Ragueneau, Livia Perfetto, Birgit Meldal, Sandra Orchard, Henning Hermjakob
{"title":"Mining Alzheimer's Interactomes, Macromolecular Complexes and Pathways for Drug Discovery.","authors":"Kalpana Panneerselvam, Krishna Kumar Tiwari, Luana Licata, Simona Panni, Sylvie Ricard-Blum, Sucharitha Balu, Susie Huget, Juan Jose Medina Reyes, Eliot Ragueneau, Livia Perfetto, Birgit Meldal, Sandra Orchard, Henning Hermjakob","doi":"10.1002/pmic.70018","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to dementia. Many cases are diagnosed annually and there is no currently available cure. Understanding the underlying disease biology of AD through the study of molecular networks, particularly by mapping clinical variants to tissue-specific interactomes and regulatory macromolecular assemblies, offers a promising avenue to elucidate altered disease pathways. In this study, we applied differential interactome analysis using a manually curated AD dataset to identify how disease-associated mutations alter both transient and stable protein interactions. By focussing on variant-specific associations detected in brain-relevant tissues, we mapped disruptions in stable macromolecular assemblies and performed Reactome enrichment analysis to uncover perturbed pathways unique to each variant. Additionally, we explored therapeutic insights through the analysis of amyloid precursor protein (APP) physical interactors, identifying potential intervention points that influence amyloidogenic processing. Complementing protein-level data, we integrated microRNA (miRNA)-mediated regulatory interactions, revealing an additional layer of posttranscriptional control over key AD genes. Together, this multilayered strategy provides a framework for precision therapeutics in AD.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e70018"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pmic.70018","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to dementia. Many cases are diagnosed annually and there is no currently available cure. Understanding the underlying disease biology of AD through the study of molecular networks, particularly by mapping clinical variants to tissue-specific interactomes and regulatory macromolecular assemblies, offers a promising avenue to elucidate altered disease pathways. In this study, we applied differential interactome analysis using a manually curated AD dataset to identify how disease-associated mutations alter both transient and stable protein interactions. By focussing on variant-specific associations detected in brain-relevant tissues, we mapped disruptions in stable macromolecular assemblies and performed Reactome enrichment analysis to uncover perturbed pathways unique to each variant. Additionally, we explored therapeutic insights through the analysis of amyloid precursor protein (APP) physical interactors, identifying potential intervention points that influence amyloidogenic processing. Complementing protein-level data, we integrated microRNA (miRNA)-mediated regulatory interactions, revealing an additional layer of posttranscriptional control over key AD genes. Together, this multilayered strategy provides a framework for precision therapeutics in AD.

阿尔茨海默病相互作用组,大分子复合物和药物发现途径的挖掘。
阿尔茨海默病(AD)是一种进行性神经退行性疾病,可导致痴呆。每年都会诊断出许多病例,目前尚无治愈方法。通过分子网络的研究,特别是通过将临床变异映射到组织特异性相互作用组和调节大分子组装,了解AD的潜在疾病生物学,为阐明改变的疾病途径提供了一条有希望的途径。在本研究中,我们使用人工整理的AD数据集应用差异相互作用组分析,以确定疾病相关突变如何改变瞬时和稳定的蛋白质相互作用。通过关注在脑相关组织中检测到的变异特异性关联,我们绘制了稳定大分子组装的中断图,并进行了Reactome富集分析,以揭示每种变异所特有的受干扰途径。此外,我们通过分析淀粉样蛋白前体蛋白(APP)物理相互作用物来探索治疗见解,确定影响淀粉样蛋白形成过程的潜在干预点。补充蛋白质水平的数据,我们整合了microRNA (miRNA)介导的调控相互作用,揭示了对关键AD基因的额外转录后控制层。总之,这种多层策略为精准治疗阿尔茨海默病提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proteomics
Proteomics 生物-生化研究方法
CiteScore
6.30
自引率
5.90%
发文量
193
审稿时长
3 months
期刊介绍: PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信