MiR-1291 mediates the protective effect of sevoflurane preconditioning against hypoxia/reoxygenation-induced myocardial cell injury.

IF 2.1 4区 医学 Q3 TOXICOLOGY
Toxicology Research Pub Date : 2025-08-28 eCollection Date: 2025-08-01 DOI:10.1093/toxres/tfaf122
Jingyi Shi, Shaoke Hou, Xinyu Yao
{"title":"MiR-1291 mediates the protective effect of sevoflurane preconditioning against hypoxia/reoxygenation-induced myocardial cell injury.","authors":"Jingyi Shi, Shaoke Hou, Xinyu Yao","doi":"10.1093/toxres/tfaf122","DOIUrl":null,"url":null,"abstract":"<p><p>The protective effects of sevoflurane (Sev) in cardiovascular disease have been well documented in studies. The investigation aimed to clarify the contribution of miR-1291 to the pathophysiological process of hypoxia-reoxygenation (H/R)-induced cardiomyocyte injury in the setting of Sev preconditioning. H/R cell models were constructed with AC16 cells and the cell models were pretreated with 1%, 1.5% and 2% concentrations of Sev. Quantitative reverse transcription polymerase chain reaction was performed to detect miR-1291 and NF2 expression in cells. Cell viability was assessed using the cell counting kit-8 assay. Apoptosis was evaluated via flow cytometry. Cellular cardiac troponin I (cTnI), lactate dehydrogenase (LDH), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels were detected by enzyme-linked immunosorbent assay. Dual luciferase reporter gene assay and RIP analysis were applied to validate the binding of miR-1291 to NF2. In the H/R cell model, miR-1291 was downregulated, and this was accompanied by reduced cell viability, increased apoptosis, and elevated levels of cTnI, LDH, IL-6 and TNF-α. In contrast, inhibition of miR-1291 expression impaired the protective effect of Sev on cardiomyocytes. NF2 was a downstream target gene of miR-1291, and miR-1291 negatively regulated the expression of NF2. Knockdown of NF2 expression alleviated the effects of miR-1291 inhibition on Sev-treated cells. Sev attenuates H/R-induced cardiomyocyte injury by regulating miR-1291/NF2 expression and inhibiting apoptosis and inflammatory responses. This study unveils a novel mechanism of Sev-mediated myocardial protection, offering theoretical support and potential therapeutic targets for myocardial injury prevention and treatment.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"14 4","pages":"tfaf122"},"PeriodicalIF":2.1000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12392403/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfaf122","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The protective effects of sevoflurane (Sev) in cardiovascular disease have been well documented in studies. The investigation aimed to clarify the contribution of miR-1291 to the pathophysiological process of hypoxia-reoxygenation (H/R)-induced cardiomyocyte injury in the setting of Sev preconditioning. H/R cell models were constructed with AC16 cells and the cell models were pretreated with 1%, 1.5% and 2% concentrations of Sev. Quantitative reverse transcription polymerase chain reaction was performed to detect miR-1291 and NF2 expression in cells. Cell viability was assessed using the cell counting kit-8 assay. Apoptosis was evaluated via flow cytometry. Cellular cardiac troponin I (cTnI), lactate dehydrogenase (LDH), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels were detected by enzyme-linked immunosorbent assay. Dual luciferase reporter gene assay and RIP analysis were applied to validate the binding of miR-1291 to NF2. In the H/R cell model, miR-1291 was downregulated, and this was accompanied by reduced cell viability, increased apoptosis, and elevated levels of cTnI, LDH, IL-6 and TNF-α. In contrast, inhibition of miR-1291 expression impaired the protective effect of Sev on cardiomyocytes. NF2 was a downstream target gene of miR-1291, and miR-1291 negatively regulated the expression of NF2. Knockdown of NF2 expression alleviated the effects of miR-1291 inhibition on Sev-treated cells. Sev attenuates H/R-induced cardiomyocyte injury by regulating miR-1291/NF2 expression and inhibiting apoptosis and inflammatory responses. This study unveils a novel mechanism of Sev-mediated myocardial protection, offering theoretical support and potential therapeutic targets for myocardial injury prevention and treatment.

MiR-1291介导七氟醚预处理对缺氧/再氧诱导的心肌细胞损伤的保护作用。
七氟醚(Sev)对心血管疾病的保护作用已在研究中得到充分证实。本研究旨在阐明在Sev预处理下miR-1291在缺氧-再氧化(H/R)诱导心肌细胞损伤的病理生理过程中的作用。用AC16细胞构建H/R细胞模型,分别用1%、1.5%和2%浓度的Sev预处理细胞模型。定量逆转录聚合酶链反应检测细胞中miR-1291和NF2的表达。采用细胞计数试剂盒-8法测定细胞活力。流式细胞术检测细胞凋亡。采用酶联免疫吸附法检测细胞心肌肌钙蛋白I (cTnI)、乳酸脱氢酶(LDH)、白细胞介素6 (IL-6)和肿瘤坏死因子-α (TNF-α)水平。采用双荧光素酶报告基因测定和RIP分析验证miR-1291与NF2的结合。在H/R细胞模型中,miR-1291下调,同时伴随着细胞活力降低、凋亡增加、cTnI、LDH、IL-6和TNF-α水平升高。相反,抑制miR-1291表达会削弱Sev对心肌细胞的保护作用。NF2是miR-1291的下游靶基因,miR-1291负向调控NF2的表达。NF2表达下调可减轻miR-1291对sev处理细胞的抑制作用。Sev通过调节miR-1291/NF2表达、抑制细胞凋亡和炎症反应,减轻H/ r诱导的心肌细胞损伤。本研究揭示了sev介导心肌保护的新机制,为心肌损伤的防治提供了理论支持和潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxicology Research
Toxicology Research TOXICOLOGY-
CiteScore
3.60
自引率
0.00%
发文量
82
期刊介绍: A multi-disciplinary journal covering the best research in both fundamental and applied aspects of toxicology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信