Design Space Exploration and Machine Learning Prediction of Hydrofluorocarbon Solubility in Ionic Liquids for Refrigerant Separation.

IF 5.3 2区 化学 Q1 CHEMISTRY, MEDICINAL
Ashfaq Iftakher, M M Faruque Hasan
{"title":"Design Space Exploration and Machine Learning Prediction of Hydrofluorocarbon Solubility in Ionic Liquids for Refrigerant Separation.","authors":"Ashfaq Iftakher, M M Faruque Hasan","doi":"10.1021/acs.jcim.5c01216","DOIUrl":null,"url":null,"abstract":"<p><p>Ionic liquids (ILs) are promising solvents for the separation of hydrofluorocarbon (HFC) mixtures due to their tunable solvation properties and negligible vapor pressure. We present a computational study of <i>R</i>-32 and <i>R</i>-125 solubility in over 341,000 ILs. These HFCs are widely used in refrigerant mixtures such as <i>R</i>-410A (50/50 wt % <i>R</i>-32 and <i>R</i>-125). Using COSMO-RS based molecular simulation, we compute infinite-dilution activity coefficients that reveal a broad spectrum of solubility and selectivity across IL families. Dimensionality reduction techniques, such as PCA and t-SNE, uncover distinct regions in IL design space with varying potential for HFC absorption. While traditional IL selection for <i>R</i>-410A separation primarily depends on <i>R</i>-32 selective ILs, our analysis reveals many <i>R</i>-125 selective ILs. Building on thermodynamic insights, we also propose a new geometric measure for rapid screening of ILs as solvents for <i>R</i>-410A separation. Furthermore, we develop machine learning (ML) models that accurately predict infinite dilution activity coefficients of <i>R</i>-32 and <i>R</i>-125 in ILs. We develop a binary classifier to further distinguish <i>R</i>-32- vs <i>R</i>-125-selective ILs with over 95% precision and recall. These models provide rapid prediction of infinite dilution activity coefficients, thereby facilitating the identification and design of promising ILs for refrigerant separation involving <i>R</i>-32 and <i>R</i>-125, and are available at https://github.com/aiftakher/HFC-IL-ActivityCoefficient.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c01216","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ionic liquids (ILs) are promising solvents for the separation of hydrofluorocarbon (HFC) mixtures due to their tunable solvation properties and negligible vapor pressure. We present a computational study of R-32 and R-125 solubility in over 341,000 ILs. These HFCs are widely used in refrigerant mixtures such as R-410A (50/50 wt % R-32 and R-125). Using COSMO-RS based molecular simulation, we compute infinite-dilution activity coefficients that reveal a broad spectrum of solubility and selectivity across IL families. Dimensionality reduction techniques, such as PCA and t-SNE, uncover distinct regions in IL design space with varying potential for HFC absorption. While traditional IL selection for R-410A separation primarily depends on R-32 selective ILs, our analysis reveals many R-125 selective ILs. Building on thermodynamic insights, we also propose a new geometric measure for rapid screening of ILs as solvents for R-410A separation. Furthermore, we develop machine learning (ML) models that accurately predict infinite dilution activity coefficients of R-32 and R-125 in ILs. We develop a binary classifier to further distinguish R-32- vs R-125-selective ILs with over 95% precision and recall. These models provide rapid prediction of infinite dilution activity coefficients, thereby facilitating the identification and design of promising ILs for refrigerant separation involving R-32 and R-125, and are available at https://github.com/aiftakher/HFC-IL-ActivityCoefficient.

氢氟碳在离子液体中制冷剂分离溶解度的设计空间探索和机器学习预测。
离子液体由于其可调节的溶剂化性质和可忽略的蒸气压,是分离氢氟碳化合物(HFC)混合物的有前途的溶剂。我们提出了一个计算研究的R-32和R-125溶解度在超过341,000 il。这些氢氟碳化物广泛用于R-410A (50/50 wt % R-32和R-125)等制冷剂混合物中。使用cosmos - rs为基础的分子模拟,我们计算了无限稀释活性系数,揭示了广泛的溶解度和选择性在IL家族。降维技术,如PCA和t-SNE,揭示了IL设计空间中具有不同HFC吸收潜力的不同区域。虽然传统的R-410A分离的IL选择主要取决于R-32选择性IL,但我们的分析揭示了许多R-125选择性IL。在热力学见解的基础上,我们还提出了一种新的几何测量方法,用于快速筛选il作为R-410A分离溶剂。此外,我们开发了机器学习(ML)模型,可以准确预测il中R-32和R-125的无限稀释活性系数。我们开发了一个二元分类器来进一步区分R-32和r -125选择性il,准确率和召回率超过95%。这些模型提供了无限稀释活度系数的快速预测,从而促进了R-32和R-125制冷剂分离的有前途的il的识别和设计,并可在https://github.com/aiftakher/HFC-IL-ActivityCoefficient上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信