Antonin Kunka, Hana Hribkova, Tereza Vanova, Veronika Pospisilova, Martin Havlasek, Jan Haviernik, Daniel Ruzek, Jiri Damborsky, Dasa Bohaciakova* and Zbynek Prokop*,
{"title":"Modulation of Amyloid-β Aggregation by Surface Proteins from Pathogens Associated with Alzheimer’s Disease","authors":"Antonin Kunka, Hana Hribkova, Tereza Vanova, Veronika Pospisilova, Martin Havlasek, Jan Haviernik, Daniel Ruzek, Jiri Damborsky, Dasa Bohaciakova* and Zbynek Prokop*, ","doi":"10.1021/acschemneuro.5c00444","DOIUrl":null,"url":null,"abstract":"<p >Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder. Despite substantial research efforts, our understanding of its pathogenesis remains incomplete, limiting the development of effective treatments and preventive strategies. The potential role of microbial pathogens in AD etiology has gained increasing attention. Various human microbial pathogens have been identified in the brains of AD patients, leading to the pathogen hypothesis, which posits that these microorganisms may disrupt the brain’s immune regulation and homeostasis. In this study, we examine the effects of proteins from three pathogens, <i>Borrelia burgdorferi</i>, HSV-1, and <i>Porphyromonas gingivalis</i>, on the aggregation of antimicrobial peptide amyloid-β (Aβ). Three of the four studied proteins were found to attenuate the aggregation of Aβ42 by interacting with its soluble form and inhibiting primary and secondary pathways. These in vitro findings were further supported by experiments using mature neurons derived from human pluripotent stem cells, which showed an increased accumulation of amyloid precursor protein (APP) aggregates upon infection with HSV-1 or exposure to the OspA surface protein from <i>B. burgdorferi</i>. Together, our results provide mechanistic insights into how pathogen-associated proteins modulate Aβ42 aggregation, contributing to an understanding of their potential role in AD pathogenesis.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"16 18","pages":"3554–3566"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acschemneuro.5c00444","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschemneuro.5c00444","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder. Despite substantial research efforts, our understanding of its pathogenesis remains incomplete, limiting the development of effective treatments and preventive strategies. The potential role of microbial pathogens in AD etiology has gained increasing attention. Various human microbial pathogens have been identified in the brains of AD patients, leading to the pathogen hypothesis, which posits that these microorganisms may disrupt the brain’s immune regulation and homeostasis. In this study, we examine the effects of proteins from three pathogens, Borrelia burgdorferi, HSV-1, and Porphyromonas gingivalis, on the aggregation of antimicrobial peptide amyloid-β (Aβ). Three of the four studied proteins were found to attenuate the aggregation of Aβ42 by interacting with its soluble form and inhibiting primary and secondary pathways. These in vitro findings were further supported by experiments using mature neurons derived from human pluripotent stem cells, which showed an increased accumulation of amyloid precursor protein (APP) aggregates upon infection with HSV-1 or exposure to the OspA surface protein from B. burgdorferi. Together, our results provide mechanistic insights into how pathogen-associated proteins modulate Aβ42 aggregation, contributing to an understanding of their potential role in AD pathogenesis.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research